Graph-Regularized Manifold-Aware Conditional Wasserstein GAN for Brain
Functional Connectivity Generation
- URL: http://arxiv.org/abs/2212.05316v1
- Date: Sat, 10 Dec 2022 14:51:44 GMT
- Title: Graph-Regularized Manifold-Aware Conditional Wasserstein GAN for Brain
Functional Connectivity Generation
- Authors: Yee-Fan Tan, Chee-Ming Ting, Fuad Noman, Rapha\"el C.-W. Phan, and
Hernando Ombao
- Abstract summary: We propose a graph-regularized conditional Wasserstein GAN (GR-SPD-GAN) for FC data generation on the SPD manifold.
The GR-SPD-GAN clearly outperforms several state-of-the-art GANs in generating more realistic fMRI-based FC samples.
- Score: 13.009230460620369
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Common measures of brain functional connectivity (FC) including covariance
and correlation matrices are semi-positive definite (SPD) matrices residing on
a cone-shape Riemannian manifold. Despite its remarkable success for
Euclidean-valued data generation, use of standard generative adversarial
networks (GANs) to generate manifold-valued FC data neglects its inherent SPD
structure and hence the inter-relatedness of edges in real FC. We propose a
novel graph-regularized manifold-aware conditional Wasserstein GAN (GR-SPD-GAN)
for FC data generation on the SPD manifold that can preserve the global FC
structure. Specifically, we optimize a generalized Wasserstein distance between
the real and generated SPD data under an adversarial training, conditioned on
the class labels. The resulting generator can synthesize new SPD-valued FC
matrices associated with different classes of brain networks, e.g., brain
disorder or healthy control. Furthermore, we introduce additional population
graph-based regularization terms on both the SPD manifold and its tangent space
to encourage the generator to respect the inter-subject similarity of FC
patterns in the real data. This also helps in avoiding mode collapse and
produces more stable GAN training. Evaluated on resting-state functional
magnetic resonance imaging (fMRI) data of major depressive disorder (MDD),
qualitative and quantitative results show that the proposed GR-SPD-GAN clearly
outperforms several state-of-the-art GANs in generating more realistic
fMRI-based FC samples. When applied to FC data augmentation for MDD
identification, classification models trained on augmented data generated by
our approach achieved the largest margin of improvement in classification
accuracy among the competing GANs over baselines without data augmentation.
Related papers
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
Generative adversarial networks (GANs) usually struggle in learning from highly diverse data, whose underlying manifold is complex.
We show that score matching serves as a promising solution to this issue thanks to its capability of persistently pushing the generated data points towards the real data manifold.
We propose to improve the optimization of GANs with score matching regularity (SMaRt)
arXiv Detail & Related papers (2023-11-30T03:05:14Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Higher Order Gauge Equivariant CNNs on Riemannian Manifolds and
Applications [7.322121417864824]
We introduce a higher order generalization of the gauge equivariant convolution, dubbed a gauge equivariant Volterra network (GEVNet)
This allows us to model spatially extended nonlinear interactions within a given field while still maintaining equivariance to global isometries.
In the neuroimaging data experiments, the resulting two-part architecture is used to automatically discriminate between patients with Lewy Body Disease (DLB), Alzheimer's Disease (AD) and Parkinson's Disease (PD) from diffusion magnetic resonance images (dMRI)
arXiv Detail & Related papers (2023-05-26T06:02:31Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery
from Functional Connectomics Manifolds [8.37609145576126]
We propose a geometrically aware neural framework for connectomes, i.e., the mSPD-NN.
We demonstrate the efficacy of our mSPD-NN against common alternatives for SPD mean estimation.
It uncovers stable biomarkers associated with subtle network differences among patients with ADHD-ASD comorbidities and healthy controls.
arXiv Detail & Related papers (2023-03-27T08:30:11Z) - Graph Federated Learning for CIoT Devices in Smart Home Applications [23.216140264163535]
We propose a novel Graph Signal Processing (GSP)-inspired aggregation rule based on graph filtering dubbed G-Fedfilt''
The proposed aggregator enables a structured flow of information based on the graph's topology.
It is capable of yielding up to $2.41%$ higher accuracy than FedAvg in the case of testing the generalization of the models.
arXiv Detail & Related papers (2022-12-29T17:57:19Z) - Deep Optimal Transport for Domain Adaptation on SPD Manifolds [9.552869120136005]
We introduce a new geometric deep learning framework that combines optimal transport theory with the geometry of SPD manifold.
Our approach aligns data distributions while respecting the manifold structure, effectively reducing both marginal and conditional discrepancies.
We validate our method on three cross-session brain computer interface datasets, KU, BNCI2014001, and BNCI2015001.
arXiv Detail & Related papers (2022-01-15T03:13:02Z) - Improving Model Compatibility of Generative Adversarial Networks by
Boundary Calibration [24.28407308818025]
Boundary-Calibration GANs (BCGANs) are proposed to improve GAN's model compatibility.
BCGANs generate realistic images like original GANs but also achieves superior model compatibility than the original GANs.
arXiv Detail & Related papers (2021-11-03T16:08:09Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution.
In practice, semantic information might be represented by some latent distribution learned from data.
We propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data.
arXiv Detail & Related papers (2020-07-28T09:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.