mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery
from Functional Connectomics Manifolds
- URL: http://arxiv.org/abs/2303.14986v1
- Date: Mon, 27 Mar 2023 08:30:11 GMT
- Title: mSPD-NN: A Geometrically Aware Neural Framework for Biomarker Discovery
from Functional Connectomics Manifolds
- Authors: Niharika S. D'Souza and Archana Venkataraman
- Abstract summary: We propose a geometrically aware neural framework for connectomes, i.e., the mSPD-NN.
We demonstrate the efficacy of our mSPD-NN against common alternatives for SPD mean estimation.
It uncovers stable biomarkers associated with subtle network differences among patients with ADHD-ASD comorbidities and healthy controls.
- Score: 8.37609145576126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connectomics has emerged as a powerful tool in neuroimaging and has spurred
recent advancements in statistical and machine learning methods for
connectivity data. Despite connectomes inhabiting a matrix manifold, most
analytical frameworks ignore the underlying data geometry. This is largely
because simple operations, such as mean estimation, do not have easily
computable closed-form solutions. We propose a geometrically aware neural
framework for connectomes, i.e., the mSPD-NN, designed to estimate the geodesic
mean of a collections of symmetric positive definite (SPD) matrices. The
mSPD-NN is comprised of bilinear fully connected layers with tied weights and
utilizes a novel loss function to optimize the matrix-normal equation arising
from Fr\'echet mean estimation. Via experiments on synthetic data, we
demonstrate the efficacy of our mSPD-NN against common alternatives for SPD
mean estimation, providing competitive performance in terms of scalability and
robustness to noise. We illustrate the real-world flexibility of the mSPD-NN in
multiple experiments on rs-fMRI data and demonstrate that it uncovers stable
biomarkers associated with subtle network differences among patients with
ADHD-ASD comorbidities and healthy controls.
Related papers
- Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - Adaptive Log-Euclidean Metrics for SPD Matrix Learning [73.12655932115881]
We propose Adaptive Log-Euclidean Metrics (ALEMs), which extend the widely used Log-Euclidean Metric (LEM)
The experimental and theoretical results demonstrate the merit of the proposed metrics in improving the performance of SPD neural networks.
arXiv Detail & Related papers (2023-03-26T18:31:52Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - coVariance Neural Networks [119.45320143101381]
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning.
We propose a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs.
We show that VNN performance is indeed more stable than PCA-based statistical approaches.
arXiv Detail & Related papers (2022-05-31T15:04:43Z) - DEMAND: Deep Matrix Approximately NonlinearDecomposition to Identify
Meta, Canonical, and Sub-Spatial Pattern of functional Magnetic Resonance
Imaging in the Human Brain [8.93274096260726]
We propose a novel deep nonlinear matrix factorization named Deep Approximately Decomposition (DEMAND) in this work to take advantage of the shallow linear model, e.g., Sparse Dictionary Learning (SDL) and Deep Neural Networks (DNNs)
DEMAND can reveal the reproducible meta, canonical, and sub-spatial features of the human brain more efficiently than other peer methodologies.
arXiv Detail & Related papers (2022-05-20T15:55:01Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Deep Optimal Transport for Domain Adaptation on SPD Manifolds [9.552869120136005]
neuroimaging data possess the mathematical properties of symmetry and positive definiteness.
Applying conventional domain adaptation methods is challenging because these mathematical properties can be disrupted.
We introduce a novel geometric deep learning-based approach to manage discrepancies in both marginal and conditional distributions.
arXiv Detail & Related papers (2022-01-15T03:13:02Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations [5.200461964737113]
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography.
Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores.
Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
arXiv Detail & Related papers (2020-08-27T23:43:56Z) - LOCUS: A Novel Decomposition Method for Brain Network Connectivity
Matrices using Low-rank Structure with Uniform Sparsity [8.105772140598056]
Network-oriented research has been increasingly popular in many scientific areas.
In neuroscience research, imaging-based network connectivity measures have become the key for brain organizations.
arXiv Detail & Related papers (2020-08-19T05:47:12Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.