論文の概要: A smart resource management mechanism with trust access control for
cloud computing environment
- arxiv url: http://arxiv.org/abs/2212.05319v1
- Date: Sat, 10 Dec 2022 15:00:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 17:41:16.671305
- Title: A smart resource management mechanism with trust access control for
cloud computing environment
- Title(参考訳): クラウドコンピューティング環境における信頼アクセス制御によるスマートリソース管理機構
- Authors: Sakshi Chhabra and Ashutosh Kumar Singh
- Abstract要約: この記事では、安全かつパフォーマンス効率の良いクラウド設定におけるワークロード管理パラダイムの概念的フレームワークを提案する。
このパラダイムでは、資源管理ユニットがエネルギーに使われ、効率よく仮想マシンの割り当てを行う。
セキュアな仮想マシン管理部は、リソース管理部を制御し、不正アクセスまたは通信に関するデータを生成する。
- 参考スコア(独自算出の注目度): 3.3504365823045044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The core of the computer business now offers subscription-based on-demand
services with the help of cloud computing. We may now share resources among
multiple users by using virtualization, which creates a virtual instance of a
computer system running in an abstracted hardware layer. It provides infinite
computing capabilities through its massive cloud datacenters, in contrast to
early distributed computing models, and has been incredibly popular in recent
years because to its continually growing infrastructure, user base, and hosted
data volume. This article suggests a conceptual framework for a workload
management paradigm in cloud settings that is both safe and
performance-efficient. A resource management unit is used in this paradigm for
energy and performing virtual machine allocation with efficiency, assuring the
safe execution of users' applications, and protecting against data breaches
brought on by unauthorised virtual machine access real-time. A secure virtual
machine management unit controls the resource management unit and is created to
produce data on unlawful access or intercommunication. Additionally, a workload
analyzer unit works simultaneously to estimate resource consumption data to
help the resource management unit be more effective during virtual machine
allocation. The suggested model functions differently to effectively serve the
same objective, including data encryption and decryption prior to transfer,
usage of trust access mechanism to prevent unauthorised access to virtual
machines, which creates extra computational cost overhead.
- Abstract(参考訳): コンピュータビジネスの中核は、クラウドコンピューティングの助けを借りてサブスクリプションベースのオンデマンドサービスを提供している。
仮想化を使うことで、抽象化されたハードウェア層で動作するコンピュータシステムの仮想インスタンスを作成することで、複数のユーザ間でリソースを共有することができる。
初期の分散コンピューティングモデルとは対照的に、巨大なクラウドデータセンタを通じて無限のコンピューティング能力を提供します。
この記事では、安全かつパフォーマンス効率の良いクラウド設定におけるワークロード管理パラダイムの概念的フレームワークを提案する。
リソース管理ユニットは、このパラダイムにおいて、効率よく仮想マシン割り当てを行い、ユーザのアプリケーションの安全な実行を保証し、無許可の仮想マシンアクセスによるデータ漏洩をリアルタイムで防止するために使用される。
セキュアな仮想マシン管理部は、リソース管理部を制御し、不正アクセスまたは通信に関するデータを生成する。
さらに、ワークロードアナライザ部は、仮想マシン割り当て時にリソース管理部がより効果的になるように、リソース消費データを同時に推定する。
提案したモデルは、転送前のデータ暗号化や復号化、仮想マシンへの不正アクセスを防ぐための信頼アクセス機構の使用など、同じ目的を効果的に果たすために異なる機能を持つ。
関連論文リスト
- VeriSplit: Secure and Practical Offloading of Machine Learning Inferences across IoT Devices [31.247069150077632]
多くのIoT(Internet-of-Things)デバイスは、機械学習推論を実行するためにクラウド計算リソースに依存している。
これは高価で、ユーザーのプライバシーを心配する可能性がある。
ローカルで利用可能なデバイスに機械学習推論をオフロードするフレームワークであるVeriSplitを提案する。
論文 参考訳(メタデータ) (2024-06-02T01:28:38Z) - Dynamic Resource Allocation for Virtual Machine Migration Optimization using Machine Learning [17.423579410846695]
段落は文法的に正確で論理的に一貫性がある。
これは、効率的なデータアクセスとストレージの必要性と、追加の時間遅延を防ぐためのクラウドコンピューティングマイグレーション技術の利用を強調している。
論文 参考訳(メタデータ) (2024-03-20T14:13:44Z) - Scalable Federated Unlearning via Isolated and Coded Sharding [76.12847512410767]
フェデレートされたアンラーニングは、クライアントレベルのデータエフェクトを削除するための有望なパラダイムとして登場した。
本稿では,分散シャーディングと符号化コンピューティングに基づく,スケーラブルなフェデレーション・アンラーニング・フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T08:41:45Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
信頼性コンピューティングは、Trusted Execution Environments(TEEs)と呼ばれる特別なハードウェア隔離ユニットを使用して、コテナントクラウドデプロイメントにおける機密コードとデータの保護を可能にする。
低レベルのC/C++ベースのツールチェーンを提供するTEEは、固有のメモリ安全性の脆弱性の影響を受けやすく、明示的で暗黙的な情報フローのリークを監視するための言語構造が欠如している。
私たちは、Haskellに埋め込まれたドメイン固有言語(cla)であるHasTEE+を使って、上記の問題に対処します。
論文 参考訳(メタデータ) (2024-01-17T00:56:23Z) - IDEAL: Toward High-efficiency Device-Cloud Collaborative and Dynamic
Recommendation System [48.04687384069841]
2つのトレンドは、デバイスとクラウドのコラボレーションと動的レコメンデーションを可能にする。
我々は、ドメイン外データを検出することで、Iを実装するための新しいデバイスインテリジェンスタスクを設計する。
本研究は,4つの公開ベンチマークにおける有効性と一般化性を示す。
論文 参考訳(メタデータ) (2023-02-14T20:44:12Z) - The MIT Supercloud Dataset [3.375826083518709]
我々は、大規模なHPCとデータセンター/クラウドオペレーションの分析において、革新的なAI/MLアプローチを促進することを目的とした、MIT Supercloudデータセットを紹介します。
我々は、ジョブ毎のCPUおよびGPU使用率、メモリ使用率、ファイルシステムログ、物理モニタリングデータを含む、MIT Supercloudシステムから詳細な監視ログを提供する。
本稿では,データセットの詳細,収集手法,データ可用性について論じ,このデータを用いて開発されている潜在的な課題について論じる。
論文 参考訳(メタデータ) (2021-08-04T13:06:17Z) - Machine Learning (ML)-Centric Resource Management in Cloud Computing: A
Review and Future Directions [22.779373079539713]
インフラストラクチャ・アズ・ア・サービス(I)は、最も重要かつ急速に成長する分野の1つです。
私のクラウドコンピューティングの最も重要な側面の1つは、リソース管理です。
機械学習は、さまざまなリソース管理タスクを処理するために使用されます。
論文 参考訳(メタデータ) (2021-05-09T08:03:58Z) - Power Modeling for Effective Datacenter Planning and Compute Management [53.41102502425513]
我々は,すべてのハードウェア構成とワークロードに適用可能な,正確でシンプルで解釈可能な統計パワーモデルの設計と検証の2つのクラスについて論じる。
提案された統計的モデリング手法は, 単純かつスケーラブルでありながら, 4つの特徴のみを用いて, 95% 以上の多様な配電ユニット (2000 以上) に対して, 5% 未満の絶対パーセンテージエラー (MAPE) で電力を予測できることを実証した。
論文 参考訳(メタデータ) (2021-03-22T21:22:51Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Cost-effective Machine Learning Inference Offload for Edge Computing [0.3149883354098941]
本稿では,インストール・ベース・オンプレミス(edge)計算資源を活用した新しいオフロード機構を提案する。
提案するメカニズムにより、エッジデバイスは、リモートクラウドを使用する代わりに、重い計算集約的なワークロードをエッジノードにオフロードすることができる。
論文 参考訳(メタデータ) (2020-12-07T21:11:02Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。