論文の概要: How to Backdoor Diffusion Models?
- arxiv url: http://arxiv.org/abs/2212.05400v2
- Date: Fri, 21 Apr 2023 08:19:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 17:50:38.276870
- Title: How to Backdoor Diffusion Models?
- Title(参考訳): バックドア拡散モデルはどうすればよいか?
- Authors: Sheng-Yen Chou, Pin-Yu Chen, Tsung-Yi Ho
- Abstract要約: 本稿では,バックドア攻撃に対する拡散モデルの堅牢性に関する最初の研究について述べる。
我々は,バックドアインプラントのモデルトレーニング中に拡散過程を侵害する新たな攻撃フレームワークであるBadDiffusionを提案する。
本研究の結果は,拡散モデルの誤用や潜在的なリスクへの注意を呼び起こす。
- 参考スコア(独自算出の注目度): 74.43215520371506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models are state-of-the-art deep learning empowered generative
models that are trained based on the principle of learning forward and reverse
diffusion processes via progressive noise-addition and denoising. To gain a
better understanding of the limitations and potential risks, this paper
presents the first study on the robustness of diffusion models against backdoor
attacks. Specifically, we propose BadDiffusion, a novel attack framework that
engineers compromised diffusion processes during model training for backdoor
implantation. At the inference stage, the backdoored diffusion model will
behave just like an untampered generator for regular data inputs, while falsely
generating some targeted outcome designed by the bad actor upon receiving the
implanted trigger signal. Such a critical risk can be dreadful for downstream
tasks and applications built upon the problematic model. Our extensive
experiments on various backdoor attack settings show that BadDiffusion can
consistently lead to compromised diffusion models with high utility and target
specificity. Even worse, BadDiffusion can be made cost-effective by simply
finetuning a clean pre-trained diffusion model to implant backdoors. We also
explore some possible countermeasures for risk mitigation. Our results call
attention to potential risks and possible misuse of diffusion models. Our code
is available on https://github.com/IBM/BadDiffusion.
- Abstract(参考訳): 拡散モデルは最先端のディープラーニングエンパワードジェネレーティブモデルであり、プログレッシブノイズ付加とデノージングを通じて前方および逆拡散プロセスを学習する原理に基づいて訓練される。
そこで本研究では,バックドア攻撃に対する拡散モデルのロバスト性に関する最初の研究を行った。
具体的には,バックドア植込みのモデルトレーニング中に拡散過程を破る新たな攻撃フレームワークであるbaddiffusionを提案する。
推論段階では、バックドア拡散モデルは通常のデータ入力のためのアンタンパードジェネレータのように振る舞うが、埋め込みされたトリガー信号を受け取ると、悪いアクターが設計したターゲット結果が誤って生成される。
このような重大なリスクは、問題のあるモデルの上に構築された下流のタスクやアプリケーションに対して恐れられる。
様々なバックドアアタック設定に関する広範な実験により,baddiffusionは,高い実用性とターゲット特異性を持つ拡散モデルに一貫して影響することが示された。
さらに悪いことに、BadDiffusionは、クリーンなトレーニング済みの拡散モデルをバックドアに移植することで、コスト効率を上げることができる。
リスク軽減対策の可能性についても検討する。
以上より,拡散モデルのリスクと誤用の可能性に注目した。
私たちのコードはhttps://github.com/IBM/BadDiffusion.comで利用可能です。
関連論文リスト
- TERD: A Unified Framework for Safeguarding Diffusion Models Against Backdoors [36.07978634674072]
拡散モデルは、その完全性を損なうバックドア攻撃に弱い。
本稿では,現在の攻撃に対する統一モデリングを構築するバックドアディフェンスフレームワークであるTERDを提案する。
TERDは、さまざまな解像度のデータセットにまたがる100%のTrue Positive Rate(TPR)とTrue Negative Rate(TNR)を保証します。
論文 参考訳(メタデータ) (2024-09-09T03:02:16Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
拡散モデルのレンズによる電力グリッドのカスケード故障について検討する。
我々のモデルは、バイラル拡散原理と物理に基づく概念を統合する。
この拡散モデルはカスケード故障の痕跡から学習可能であることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:34:24Z) - UFID: A Unified Framework for Input-level Backdoor Detection on Diffusion Models [19.46962670935554]
拡散モデルはバックドア攻撃に弱い。
悪意のある攻撃者は 裏口を注射する 訓練サンプルの一部に毒を盛った
これは、APIを通じて拡散モデルに問い合わせたり、インターネットから直接ダウンロードしたりする、ダウンストリームユーザにとって深刻な脅威となる。
論文 参考訳(メタデータ) (2024-04-01T13:21:05Z) - The last Dance : Robust backdoor attack via diffusion models and bayesian approach [0.0]
拡散モデルは、前方と後方の学習原理に基づいて訓練された最先端のディープラーニング生成モデルである。
人工知能研究の世界で人気のあるフレームワークであるHugging Faceから派生したオーディオトランスフォーマーに対するバックドア攻撃の可能性を示す。
論文 参考訳(メタデータ) (2024-02-05T18:00:07Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Leveraging Diffusion-Based Image Variations for Robust Training on
Poisoned Data [26.551317580666353]
バックドア攻撃は、ニューラルネットワークをトレーニングする上で深刻なセキュリティ上の脅威となる。
本稿では,近年の拡散モデルのパワーを生かして,潜在的に有毒なデータセットのモデルトレーニングを可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-10T07:25:06Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
拡散モデルは、前方拡散段階と逆拡散段階の2つの段階に基づく深層生成モデルである。
拡散モデルは、既知の計算負荷にもかかわらず、生成したサンプルの品質と多様性に対して広く評価されている。
論文 参考訳(メタデータ) (2022-09-10T22:00:30Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
拡散に基づく生成モデルは、逆拡散連鎖を推論してデータを生成する方法を学ぶ。
我々は、データが純粋なランダムノイズになるまで、より高速で安価にノイズを付加するアプローチを提案する。
提案手法は,拡散過程と学習可能な暗黙的前処理の両方によって付与された逆自動エンコーダとしてキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-02-19T20:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。