論文の概要: Mutimodal Ranking Optimization for Heterogeneous Face Re-identification
- arxiv url: http://arxiv.org/abs/2212.05510v1
- Date: Sun, 11 Dec 2022 14:04:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 16:39:34.654019
- Title: Mutimodal Ranking Optimization for Heterogeneous Face Re-identification
- Title(参考訳): 不均質な顔再同定のためのミューティモダルランキング最適化
- Authors: Hui Hu, Jiawei Zhang, Zhen Han
- Abstract要約: 不均一な顔の再識別、すなわち、不規則な可視光(VIS)と近赤外線(NIR)カメラをまたいだ異種顔のマッチングは、ビデオ監視アプリケーションにおいて重要な問題となっている。
この問題を解決するために,不均一顔再同定のための多モード融合ランキング最適化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 20.391617513257252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterogeneous face re-identification, namely matching heterogeneous faces
across disjoint visible light (VIS) and near-infrared (NIR) cameras, has become
an important problem in video surveillance application. However, the large
domain discrepancy between heterogeneous NIR-VIS faces makes the performance of
face re-identification degraded dramatically. To solve this problem, a
multimodal fusion ranking optimization algorithm for heterogeneous face
re-identification is proposed in this paper. Firstly, we design a heterogeneous
face translation network to obtain multimodal face pairs, including
NIR-VIS/NIR-NIR/VIS-VIS face pairs, through mutual transformation between
NIR-VIS faces. Secondly, we propose linear and non-linear fusion strategies to
aggregate initial ranking lists of multimodal face pairs and acquire the
optimized re-ranked list based on modal complementarity. The experimental
results show that the proposed multimodal fusion ranking optimization algorithm
can effectively utilize the complementarity and outperforms some relative
methods on the SCface dataset.
- Abstract(参考訳): 不均一な顔の再識別、すなわち、不規則な可視光(VIS)と近赤外線(NIR)カメラをまたいだ異種顔のマッチングは、ビデオ監視アプリケーションにおいて重要な問題となっている。
しかし、異種NIR-VIS面間の大きな領域差は、顔の再識別性能を劇的に低下させる。
この問題を解決するために,不均一顔再同定のための多モード融合ランキング最適化アルゴリズムを提案する。
まず、NIR-VIS/NIR-NIR/VIS-VISフェースペアを含むマルチモーダルフェースペアをNIR-VISフェース間の相互変換により得るヘテロジニアスフェース変換ネットワークを設計する。
次に,マルチモーダル対の初期ランキングリストを集約し,モーダル相補性に基づいて最適化された再ランクリストを得るための線形および非線形融合戦略を提案する。
実験結果から,提案アルゴリズムは相補性を効果的に利用し,SCfaceデータセット上での相対的手法よりも優れていることがわかった。
関連論文リスト
- Exploring Invariant Representation for Visible-Infrared Person
Re-Identification [77.06940947765406]
異なるスペクトルを横断する歩行者にアイデンティティを関連付けることを目的とした、クロススペクトルの人物再識別は、モダリティの相違の主な課題に直面している。
本稿では、ロバスト機能マイニングネットワーク(RFM)と呼ばれるエンドツーエンドのハイブリッド学習フレームワークにおいて、画像レベルと特徴レベルの両方の問題に対処する。
RegDBとSYSU-MM01という2つの標準的なクロススペクトル人物識別データセットの実験結果により,最先端の性能が示された。
論文 参考訳(メタデータ) (2023-02-02T05:24:50Z) - Physically-Based Face Rendering for NIR-VIS Face Recognition [165.54414962403555]
近赤外(NIR)と可視(VIS)の顔マッチングは、大きなドメインギャップのために困難である。
NIR-VIS対顔画像生成のための新しい手法を提案する。
アイデンティティ特徴学習を容易にするために,IDentityに基づく最大平均離散性(ID-MMD)損失を提案する。
論文 参考訳(メタデータ) (2022-11-11T18:48:16Z) - A Bidirectional Conversion Network for Cross-Spectral Face Recognition [1.9766522384767227]
可視光画像と赤外線画像との劇的な違いにより、スペクトル間顔認識は困難である。
本稿では,異種顔画像間の双方向クロススペクトル変換(BCSC-GAN)の枠組みを提案する。
ネットワークは、スペクトル間認識問題をスペクトル内問題に還元し、双方向情報を融合することで性能を向上させる。
論文 参考訳(メタデータ) (2022-05-03T16:20:10Z) - Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared
Person Re-Identification [84.32086702849338]
RGB-赤外線人物再同定のための新しいモダリティ適応混合・不変分解(MID)手法を提案する。
MIDは、RGBと赤外線画像の混合画像を生成するためのモダリティ適応混合方式を設計する。
2つの挑戦的なベンチマーク実験は、最先端の手法よりもMIDの優れた性能を示す。
論文 参考訳(メタデータ) (2022-03-03T14:26:49Z) - MSO: Multi-Feature Space Joint Optimization Network for RGB-Infrared
Person Re-Identification [35.97494894205023]
RGB-infrared cross-modality person re-identification (ReID) タスクは、可視モダリティと赤外線モダリティの同一性の画像を認識することを目的としている。
既存の手法は主に2ストリームアーキテクチャを使用して、最終的な共通特徴空間における2つのモード間の相違を取り除く。
単一モダリティ空間と共通空間の両方において、モダリティ調和可能な特徴を学習できる新しい多機能空間共同最適化(MSO)ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-21T16:45:23Z) - Heterogeneous Face Frontalization via Domain Agnostic Learning [74.86585699909459]
本研究では, 視覚領域における正面視を, ポーズのバリエーションで合成できるドメイン非依存学習型生成逆数ネットワーク(DAL-GAN)を提案する。
DAL-GANは、補助分類器を備えたジェネレータと、より優れた合成のために局所的およびグローバルなテクスチャ識別をキャプチャする2つの識別器から構成される。
論文 参考訳(メタデータ) (2021-07-17T20:41:41Z) - Multi-Scale Cascading Network with Compact Feature Learning for
RGB-Infrared Person Re-Identification [35.55895776505113]
マルチスケールパートアウェアカスケードフレームワーク(MSPAC)は、マルチスケールの細かい機能を部分からグローバルに集約することによって策定されます。
したがって、クロスモダリティ相関は、特徴的モダリティ不変な特徴学習のための顕著な特徴を効率的に探索することができる。
論文 参考訳(メタデータ) (2020-12-12T15:39:11Z) - DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition [85.94331736287765]
我々は、HFRを二重生成問題として定式化し、新しいDual Variational Generation(DVG-Face)フレームワークを用いてそれに取り組む。
大規模可視データの豊富なアイデンティティ情報を結合分布に統合する。
同一の同一性を持つ多種多様な多種多様な画像は、ノイズから生成することができる。
論文 参考訳(メタデータ) (2020-09-20T09:48:24Z) - Multi-Margin based Decorrelation Learning for Heterogeneous Face
Recognition [90.26023388850771]
本稿では,超球面空間におけるデコリレーション表現を抽出するディープニューラルネットワーク手法を提案する。
提案するフレームワークは,不均一表現ネットワークとデコリレーション表現学習の2つのコンポーネントに分けることができる。
2つの難解な異種顔データベースに対する実験結果から,本手法は検証タスクと認識タスクの両方において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-05-25T07:01:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。