Mutimodal Ranking Optimization for Heterogeneous Face Re-identification
- URL: http://arxiv.org/abs/2212.05510v2
- Date: Tue, 28 May 2024 03:40:24 GMT
- Title: Mutimodal Ranking Optimization for Heterogeneous Face Re-identification
- Authors: Hui Hu, Jiawei Zhang, Zhen Han,
- Abstract summary: Heterogeneous face re-identification, namely matching heterogeneous faces across disjoint visible light (VIS) and near-infrared (NIR) cameras, has become an important problem in video surveillance application.
To solve this problem, a multimodal fusion ranking optimization algorithm for heterogeneous face re-identification is proposed in this paper.
- Score: 17.987122302811404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterogeneous face re-identification, namely matching heterogeneous faces across disjoint visible light (VIS) and near-infrared (NIR) cameras, has become an important problem in video surveillance application. However, the large domain discrepancy between heterogeneous NIR-VIS faces makes the performance of face re-identification degraded dramatically. To solve this problem, a multimodal fusion ranking optimization algorithm for heterogeneous face re-identification is proposed in this paper. Firstly, we design a heterogeneous face translation network to obtain multimodal face pairs, including NIR-VIS/NIR-NIR/VIS-VIS face pairs, through mutual transformation between NIR-VIS faces. Secondly, we propose linear and non-linear fusion strategies to aggregate initial ranking lists of multimodal face pairs and acquire the optimized re-ranked list based on modal complementarity. The experimental results show that the proposed multimodal fusion ranking optimization algorithm can effectively utilize the complementarity and outperforms some relative methods on the SCface dataset.
Related papers
- Exploring Invariant Representation for Visible-Infrared Person
Re-Identification [77.06940947765406]
Cross-spectral person re-identification, which aims to associate identities to pedestrians across different spectra, faces a main challenge of the modality discrepancy.
In this paper, we address the problem from both image-level and feature-level in an end-to-end hybrid learning framework named robust feature mining network (RFM)
Experiment results on two standard cross-spectral person re-identification datasets, RegDB and SYSU-MM01, have demonstrated state-of-the-art performance.
arXiv Detail & Related papers (2023-02-02T05:24:50Z) - Physically-Based Face Rendering for NIR-VIS Face Recognition [165.54414962403555]
Near infrared (NIR) to Visible (VIS) face matching is challenging due to the significant domain gaps.
We propose a novel method for paired NIR-VIS facial image generation.
To facilitate the identity feature learning, we propose an IDentity-based Maximum Mean Discrepancy (ID-MMD) loss.
arXiv Detail & Related papers (2022-11-11T18:48:16Z) - A Bidirectional Conversion Network for Cross-Spectral Face Recognition [1.9766522384767227]
Cross-spectral face recognition is challenging due to the dramatic difference between the visible light and IR imageries.
This paper proposes a framework of bidirectional cross-spectral conversion (BCSC-GAN) between the heterogeneous face images.
The network reduces the cross-spectral recognition problem into an intra-spectral problem, and improves performance by fusing bidirectional information.
arXiv Detail & Related papers (2022-05-03T16:20:10Z) - Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared
Person Re-Identification [84.32086702849338]
We propose a novel modality-adaptive mixup and invariant decomposition (MID) approach for RGB-infrared person re-identification.
MID designs a modality-adaptive mixup scheme to generate suitable mixed modality images between RGB and infrared images.
Experiments on two challenging benchmarks demonstrate superior performance of MID over state-of-the-art methods.
arXiv Detail & Related papers (2022-03-03T14:26:49Z) - MSO: Multi-Feature Space Joint Optimization Network for RGB-Infrared
Person Re-Identification [35.97494894205023]
RGB-infrared cross-modality person re-identification (ReID) task aims to recognize the images of the same identity between the visible modality and the infrared modality.
Existing methods mainly use a two-stream architecture to eliminate the discrepancy between the two modalities in the final common feature space.
We present a novel multi-feature space joint optimization (MSO) network, which can learn modality-sharable features in both the single-modality space and the common space.
arXiv Detail & Related papers (2021-10-21T16:45:23Z) - Heterogeneous Face Frontalization via Domain Agnostic Learning [74.86585699909459]
We propose a domain agnostic learning-based generative adversarial network (DAL-GAN) which can synthesize frontal views in the visible domain from thermal faces with pose variations.
DAL-GAN consists of a generator with an auxiliary classifier and two discriminators which capture both local and global texture discriminations for better synthesis.
arXiv Detail & Related papers (2021-07-17T20:41:41Z) - Multi-Scale Cascading Network with Compact Feature Learning for
RGB-Infrared Person Re-Identification [35.55895776505113]
Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global.
Cross-modality correlations can thus be efficiently explored on salient features for distinctive modality-invariant feature learning.
arXiv Detail & Related papers (2020-12-12T15:39:11Z) - DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition [85.94331736287765]
We formulate HFR as a dual generation problem, and tackle it via a novel Dual Variational Generation (DVG-Face) framework.
We integrate abundant identity information of large-scale visible data into the joint distribution.
Massive new diverse paired heterogeneous images with the same identity can be generated from noises.
arXiv Detail & Related papers (2020-09-20T09:48:24Z) - Multi-Margin based Decorrelation Learning for Heterogeneous Face
Recognition [90.26023388850771]
This paper presents a deep neural network approach to extract decorrelation representations in a hyperspherical space for cross-domain face images.
The proposed framework can be divided into two components: heterogeneous representation network and decorrelation representation learning.
Experimental results on two challenging heterogeneous face databases show that our approach achieves superior performance on both verification and recognition tasks.
arXiv Detail & Related papers (2020-05-25T07:01:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.