An error-protected cross-resonance switch in weakly-tuneable
architectures
- URL: http://arxiv.org/abs/2212.05519v1
- Date: Sun, 11 Dec 2022 14:50:41 GMT
- Title: An error-protected cross-resonance switch in weakly-tuneable
architectures
- Authors: Xuexin Xu and M. Ansari
- Abstract summary: In two-qubit gates activated by microwave pulses, state of qubits are swapped between entangled or idle modes.
In either mode, the presence of stray couplings makes qubits accumulate coherent phase error.
We propose to combine such a gate with a tunable coupler and show that both idle and entangled qubits can become free from stray couplings.
- Score: 0.8702432681310399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In two-qubit gates activated by microwave pulses, by turning pulse on or off,
the state of qubits are swapped between entangled or idle modes. In either
mode, the presence of stray couplings makes qubits accumulate coherent phase
error. However, the error rates in the two modes differ because qubits carry
different stray coupling strengths in each mode; therefore, eliminating stray
coupling from one mode does not remove it from the other. We propose to combine
such a gate with a tunable coupler and show that both idle and entangled qubits
can become free from stray couplings. This significantly increases the
operational switch fidelity in quantum algorithms. We further propose a
weakly-tunable qubit as an optimum coupler to bring the two modes
parametrically near each other. This remarkably enhances the tuning process by
reducing its leakage.
Related papers
- Efficient decoupling of a non-linear qubit mode from its environment [0.9533143628888118]
We make use of the design flexibility of superconducting quantum circuits to form a multi-mode element with symmetry-protected modes.
The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions.
We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator.
arXiv Detail & Related papers (2023-12-28T12:16:29Z) - Photon-mediated long range coupling of two Andreev level qubits [0.0]
We show a coherent coupling between two Andreev levels qubits (ALQs) mediated by a microwave photon in a novel superconducting microwave cavity coupler.
We identify highly entangled two-qubit states for which the entanglement is mediated over a distance of six millimeters.
This work establishes ALQs as compact and scalable solid-state qubits.
arXiv Detail & Related papers (2023-10-24T16:40:49Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - Non-Hermitian zero mode laser in a nanophotonic trimer [55.41644538483948]
We report on the direct observation of a lasing zero mode in a non-Hermitian three coupled nanocavity array.
We show efficient excitation for nearly equal pump power in the two extreme cavities.
The realization of zero mode lasing in large arrays of coupled nanolasers has potential applications in laser-mode engineering.
arXiv Detail & Related papers (2023-02-03T15:21:44Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Parasitic-free gate: A protected switch between idle and entangled
states [0.8702432681310399]
We propose a gate to switch superconducting qubit pairs in and out of a two-body interaction.
It is imperative that this gate does not spread errors through the quantum register.
arXiv Detail & Related papers (2022-02-10T18:13:20Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Suppressed crosstalk between two-junction superconducting qubits with
mode-selective exchange coupling [0.0]
We experimentally demonstrate a superconducting architecture using qubits that comprise of two capacitively-shunted Josephson junctions connected in series.
We greatly suppress crosstalk between the data modes while permitting all-microwave two-qubit gates.
arXiv Detail & Related papers (2021-05-24T18:41:08Z) - Hardware-Efficient Microwave-Activated Tunable Coupling Between
Superconducting Qubits [0.0]
We realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling.
Because both transmons are driven, it is resilient to microwave crosstalk.
We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking.
arXiv Detail & Related papers (2021-05-12T01:06:08Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z) - Switching dynamics of single and coupled VO2-based oscillators as
elements of neural networks [55.41644538483948]
We report on the switching dynamics of both single and coupled VO2-based oscillators, with resistive and capacitive coupling, and explore the capability of their application in neural networks.
For the resistive coupling, it is shown that synchronization takes place at a certain value of the coupling resistance, though it is unstable and a synchronization failure occurs periodically.
For the capacitive coupling, two synchronization modes, with weak and strong coupling, are found. The transition between these modes is accompanied by chaotic oscillations.
arXiv Detail & Related papers (2020-01-07T02:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.