Graph Learning for Anomaly Analytics: Algorithms, Applications, and
Challenges
- URL: http://arxiv.org/abs/2212.05532v1
- Date: Sun, 11 Dec 2022 16:05:14 GMT
- Title: Graph Learning for Anomaly Analytics: Algorithms, Applications, and
Challenges
- Authors: Jing Ren, Feng Xia, Azadeh Noori Hoshyar and Charu C. Aggarwal
- Abstract summary: Anomaly analytics is a popular and vital task in various research contexts.
Deep learning has shown its capacity in solving many graph-based tasks like, node classification, link prediction, and graph classification.
Many studies are extending graph learning models for solving anomaly analytics problems.
- Score: 23.594664156516025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly analytics is a popular and vital task in various research contexts,
which has been studied for several decades. At the same time, deep learning has
shown its capacity in solving many graph-based tasks like, node classification,
link prediction, and graph classification. Recently, many studies are extending
graph learning models for solving anomaly analytics problems, resulting in
beneficial advances in graph-based anomaly analytics techniques. In this
survey, we provide a comprehensive overview of graph learning methods for
anomaly analytics tasks. We classify them into four categories based on their
model architectures, namely graph convolutional network (GCN), graph attention
network (GAT), graph autoencoder (GAE), and other graph learning models. The
differences between these methods are also compared in a systematic manner.
Furthermore, we outline several graph-based anomaly analytics applications
across various domains in the real world. Finally, we discuss five potential
future research directions in this rapidly growing field.
Related papers
- Towards Data-centric Machine Learning on Directed Graphs: a Survey [23.498557237805414]
We introduce a novel taxonomy for existing studies of directed graph learning.
We re-examine these methods from the data-centric perspective, with an emphasis on understanding and improving data representation.
We identify key opportunities and challenges within the field, offering insights that can guide future research and development in directed graph learning.
arXiv Detail & Related papers (2024-11-28T06:09:12Z) - Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data.
Identifying meaningful graph laws can significantly enhance the effectiveness of various applications.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Knowledge Probing for Graph Representation Learning [12.960185655357495]
We propose a novel graph probing framework (GraphProbe) to investigate and interpret whether the family of graph learning methods has encoded different levels of knowledge in graph representation learning.
Based on the intrinsic properties of graphs, we design three probes to systematically investigate the graph representation learning process from different perspectives.
We construct a thorough evaluation benchmark with nine representative graph learning methods from random walk based approaches, basic graph neural networks and self-supervised graph methods, and probe them on six benchmark datasets for node classification, link prediction and graph classification.
arXiv Detail & Related papers (2024-08-07T16:27:45Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - Self-Discriminative Modeling for Anomalous Graph Detection [27.595520991245014]
We present a self-discriminative modeling framework for anomalous graph detection.
We provide three algorithms with different computational efficiencies and stabilities for anomalous graph detection.
Surprisingly, our algorithms, though fully unsupervised, are able to significantly outperform supervised learning algorithms of anomalous graph detection.
arXiv Detail & Related papers (2023-10-10T02:08:09Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
Graph representation learning plays an important role in many graph mining applications, but learning embeddings of large-scale graphs remains a problem.
Recent works try to improve scalability via graph summarization -- i.e., they learn embeddings on a smaller summary graph, and then restore the node embeddings of the original graph.
We give an in-depth theoretical analysis of three specific embedding learning methods based on introduced kernel matrix.
arXiv Detail & Related papers (2022-07-04T04:09:50Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Graph Learning: A Survey [38.245120261668816]
We present a comprehensive overview on the state-of-the-art of graph learning.
Special attention is paid to four categories of existing graph learning methods, including graph signal processing, matrix factorization, random walk, and deep learning.
We examine graph learning applications in areas such as text, images, science, knowledge graphs, and optimization.
arXiv Detail & Related papers (2021-05-03T09:06:01Z) - A Survey of Adversarial Learning on Graphs [59.21341359399431]
We investigate and summarize the existing works on graph adversarial learning tasks.
Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks.
We emphasize the importance of related evaluation metrics, investigate and summarize them comprehensively.
arXiv Detail & Related papers (2020-03-10T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.