論文の概要: Tensor-based Sequential Learning via Hankel Matrix Representation for
Next Item Recommendations
- arxiv url: http://arxiv.org/abs/2212.05720v1
- Date: Mon, 12 Dec 2022 05:55:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 14:50:53.511476
- Title: Tensor-based Sequential Learning via Hankel Matrix Representation for
Next Item Recommendations
- Title(参考訳): 次項目推薦のためのハンケル行列表現によるテンソル型逐次学習
- Authors: Evgeny Frolov and Ivan Oseledets
- Abstract要約: 自己注意型トランスフォーマーモデルは、次の項目の推薦タスクを非常に効率的に解くことが示されている。
学習パラメータ空間の特別な構造に動機付けられ、それに代わるより軽量なアプローチでそれを模倣できるかどうかを疑問視する。
学習プロセス内のシーケンシャルデータに関する構造的知識を生かしたテンソル分解に基づく新しいモデルを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Self-attentive transformer models have recently been shown to solve the next
item recommendation task very efficiently. The learned attention weights
capture sequential dynamics in user behavior and generalize well. Motivated by
the special structure of learned parameter space, we question if it is possible
to mimic it with an alternative and more lightweight approach. We develop a new
tensor factorization-based model that ingrains the structural knowledge about
sequential data within the learning process. We demonstrate how certain
properties of a self-attention network can be reproduced with our approach
based on special Hankel matrix representation. The resulting model has a
shallow linear architecture and compares competitively to its neural
counterpart.
- Abstract(参考訳): 自己注意型トランスフォーマーモデルは、最近、次の項目推奨タスクを非常に効率的に解くことが示されている。
学習された注意重みは、ユーザの行動のシーケンシャルなダイナミクスを捉え、うまく一般化する。
学習パラメータ空間の特別な構造に動機付けられ、それに代わるより軽量なアプローチでそれを模倣できるかどうかを疑問視する。
学習プロセス内のシーケンシャルデータに関する構造的知識を生かしたテンソル分解に基づく新しいモデルを開発する。
我々は,特別なハンケル行列表現に基づいて,自己アテンションネットワークの特性をどのように再現できるかを示す。
結果として得られるモデルは、浅い線形アーキテクチャを持ち、そのニューラルアーキテクチャと比較する。
関連論文リスト
- Group and Shuffle: Efficient Structured Orthogonal Parametrization [3.540195249269228]
構造化された行列の新しいクラスを導入し、以前の研究から構造化されたクラスを統一し一般化する。
我々は,テキスト・画像拡散モデルの適応や,言語モデルにおける下流タスクの微調整など,異なる領域での手法を実証的に検証する。
論文 参考訳(メタデータ) (2024-06-14T13:29:36Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
モデルの訓練が完了すると抽出できる精度行列のスペクトルに含まれる貴重な情報を示す。
回帰,分類,特徴選択タスクの数値実験を行った。
その結果,提案モデルが競合モデルに比べて魅力的な予測性能が得られるだけでなく,予測性能も向上することが示唆された。
論文 参考訳(メタデータ) (2023-07-11T09:54:30Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
予測符号化は、当初脳の情報処理をモデル化するために開発されたメッセージパッシングフレームワークである。
本研究では,予測符号化のメッセージパス規則に依存するモデルを構築する。
提案したモデルは,帰納的タスクと帰納的タスクの両方において,標準的なモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2022-12-09T03:58:22Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
本研究では,リカレントニューラルネットワーク (R2N2) にランゲ・クッタニューラルネットワークを一般化し,リカレントニューラルネットワークを最適化した反復アルゴリズムの設計を行う。
本稿では, 線形方程式系に対するクリロフ解法, 非線形方程式系に対するニュートン・クリロフ解法, 常微分方程式に対するルンゲ・クッタ解法と類似の繰り返しを計算問題クラスの入力・出力データに対して提案した超構造内における重みパラメータの正規化について述べる。
論文 参考訳(メタデータ) (2022-11-22T16:30:33Z) - Neural Eigenfunctions Are Structured Representation Learners [93.53445940137618]
本稿ではニューラル固有写像という,構造化された適応長の深部表現を提案する。
本稿では,データ拡張設定における正の関係から固有関数が導出される場合,NeuralEFを適用することで目的関数が得られることを示す。
画像検索システムにおいて,適応長符号のような表現を用いることを実証する。
論文 参考訳(メタデータ) (2022-10-23T07:17:55Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
強化学習(TMER-RL)を活用した新しい時間的メタパスガイド型説明可能な勧告を提案する。
TMER-RLは, 動的知識グラフ上での動的ユーザ・イテム進化を逐次モデル化するために, 注意機構を持つ連続項目間の強化項目・イテムパスをモデル化する。
2つの実世界のデータセットに対するTMERの大規模な評価は、最近の強いベースラインと比較して最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2021-11-24T04:34:26Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Structured Reordering for Modeling Latent Alignments in Sequence
Transduction [86.94309120789396]
本稿では,分離可能な置換の辺りを正確に推定する効率的な動的プログラミングアルゴリズムを提案する。
結果のSeq2seqモデルは、合成問題やNLPタスクの標準モデルよりも体系的な一般化が優れている。
論文 参考訳(メタデータ) (2021-06-06T21:53:54Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
因果モデリングは機械学習(ML)における多くの課題に対する潜在的な解決策として認識されている。
深層ニューラルネットワーク(DNN)モデルによって学習された特徴表現を分解するために、最近提案された対実的アプローチが依然として使われている方法について説明する。
論文 参考訳(メタデータ) (2020-04-20T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。