KonX: Cross-Resolution Image Quality Assessment
- URL: http://arxiv.org/abs/2212.05813v1
- Date: Mon, 12 Dec 2022 10:23:48 GMT
- Title: KonX: Cross-Resolution Image Quality Assessment
- Authors: Oliver Wiedemann and Vlad Hosu and Shaolin Su and Dietmar Saupe
- Abstract summary: We present the first study of its kind that disentangles and examines the two issues separately via KonX.
We show that objective IQA methods have a scale bias, which reduces their predictive performance.
We propose a multi-scale and multi-column architecture that improves performance over previous state-of-the-art IQA models.
- Score: 6.658103076536836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scale-invariance is an open problem in many computer vision subfields. For
example, object labels should remain constant across scales, yet model
predictions diverge in many cases. This problem gets harder for tasks where the
ground-truth labels change with the presentation scale. In image quality
assessment (IQA), downsampling attenuates impairments, e.g., blurs or
compression artifacts, which can positively affect the impression evoked in
subjective studies. To accurately predict perceptual image quality,
cross-resolution IQA methods must therefore account for resolution-dependent
errors induced by model inadequacies as well as for the perceptual label shifts
in the ground truth. We present the first study of its kind that disentangles
and examines the two issues separately via KonX, a novel, carefully crafted
cross-resolution IQA database. This paper contributes the following: 1. Through
KonX, we provide empirical evidence of label shifts caused by changes in the
presentation resolution. 2. We show that objective IQA methods have a scale
bias, which reduces their predictive performance. 3. We propose a multi-scale
and multi-column DNN architecture that improves performance over previous
state-of-the-art IQA models for this task, including recent transformers. We
thus both raise and address a novel research problem in image quality
assessment.
Related papers
- DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLM-based Image Quality Assessment (IQA) seeks to describe image quality linguistically to align with human expression.
We introduce Depicted image Quality Assessment in the Wild (DepictQA-Wild)
Our method includes a multi-functional IQA task paradigm that encompasses both assessment and comparison tasks, brief and detailed responses, full-reference and non-reference scenarios.
arXiv Detail & Related papers (2024-05-29T07:49:15Z) - Cross-IQA: Unsupervised Learning for Image Quality Assessment [3.2287957986061038]
We propose a no-reference image quality assessment (NR-IQA) method termed Cross-IQA based on vision transformer(ViT) model.
The proposed Cross-IQA method can learn image quality features from unlabeled image data.
Experimental results show that Cross-IQA can achieve state-of-the-art performance in assessing the low-frequency degradation information.
arXiv Detail & Related papers (2024-05-07T13:35:51Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Blind Image Quality Assessment via Vision-Language Correspondence: A
Multitask Learning Perspective [93.56647950778357]
Blind image quality assessment (BIQA) predicts the human perception of image quality without any reference information.
We develop a general and automated multitask learning scheme for BIQA to exploit auxiliary knowledge from other tasks.
arXiv Detail & Related papers (2023-03-27T07:58:09Z) - MSTRIQ: No Reference Image Quality Assessment Based on Swin Transformer
with Multi-Stage Fusion [8.338999282303755]
We propose a novel algorithm based on the Swin Transformer.
It aggregates information from both local and global features to better predict the quality.
It ranks 2nd in the no-reference track of NTIRE 2022 Perceptual Image Quality Assessment Challenge.
arXiv Detail & Related papers (2022-05-20T11:34:35Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Cross-Quality LFW: A Database for Analyzing Cross-Resolution Image Face
Recognition in Unconstrained Environments [8.368543987898732]
Real-world face recognition applications often deal with suboptimal image quality or resolution due to different capturing conditions.
Recent cross-resolution face recognition approaches used simple, arbitrary, and unrealistic down- and up-scaling techniques to measure distances against real-world edge-cases in image quality.
We propose a new standardized benchmark dataset and evaluation protocol derived from the famous Labeled Faces in the Wild.
arXiv Detail & Related papers (2021-08-23T17:04:32Z) - MUSIQ: Multi-scale Image Quality Transformer [22.908901641767688]
Current state-of-the-art IQA methods are based on convolutional neural networks (CNNs)
We design a multi-scale image quality Transformer (MUSIQ) to process native resolution images with varying sizes and aspect ratios.
With a multi-scale image representation, our proposed method can capture image quality at different granularities.
arXiv Detail & Related papers (2021-08-12T23:36:22Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
We develop a textitunified BIQA model and an approach of training it for both synthetic and realistic distortions.
We employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs.
Experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild.
arXiv Detail & Related papers (2020-05-28T13:35:23Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
This paper presents a no-reference IQA metric based on deep meta-learning.
We first collect a number of NR-IQA tasks for different distortions.
Then meta-learning is adopted to learn the prior knowledge shared by diversified distortions.
Extensive experiments demonstrate that the proposed metric outperforms the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-04-11T23:36:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.