論文の概要: Carpet-bombing patch: attacking a deep network without usual
requirements
- arxiv url: http://arxiv.org/abs/2212.05827v1
- Date: Mon, 12 Dec 2022 10:58:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 16:03:56.477609
- Title: Carpet-bombing patch: attacking a deep network without usual
requirements
- Title(参考訳): Carpet-Bombing パッチ:通常の要求なしにディープネットワークを攻撃
- Authors: Pol Labarbarie, Adrien Chan-Hon-Tong, St\'ephane Herbin and Milad
Leyli-Abadi
- Abstract要約: 本稿では,カーペット爆弾によるパッチ攻撃について紹介する。
この攻撃によって引き起こされた潜在的な安全性の問題に加えて、カーペット爆弾攻撃の影響は、ディープ・ネットワーク・レイヤのダイナミックな興味深い性質を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep networks have shown vulnerability to evasion attacks, such
attacks have usually unrealistic requirements. Recent literature discussed the
possibility to remove or not some of these requirements. This paper contributes
to this literature by introducing a carpet-bombing patch attack which has
almost no requirement. Targeting the feature representations, this patch attack
does not require knowing the network task. This attack decreases accuracy on
Imagenet, mAP on Pascal Voc, and IoU on Cityscapes without being aware that the
underlying tasks involved classification, detection or semantic segmentation,
respectively. Beyond the potential safety issues raised by this attack, the
impact of the carpet-bombing attack highlights some interesting property of
deep network layer dynamic.
- Abstract(参考訳): ディープネットワークは回避攻撃の脆弱性を示したが、そのような攻撃は通常非現実的な要件がある。
最近の文献では、これらの要件の削除の可能性について論じている。
本論文は, ほぼ不要なカーペットボーミングパッチ攻撃を導入することで, 本研究に寄与する。
特徴表現をターゲットとして、このパッチアタックはネットワークタスクを知る必要はない。
この攻撃は、Imagenet、Pascal VocのmAP、CityscapesのIoUの精度を低下させる。
この攻撃によって引き起こされる潜在的な安全性の問題以外にも、カーペットボーミング攻撃の影響は、ディープネットワーク層の動的に興味深い特性を浮き彫りにしている。
関連論文リスト
- Ask, Attend, Attack: A Effective Decision-Based Black-Box Targeted Attack for Image-to-Text Models [29.1607388062023]
本稿では,攻撃者が最終出力テキストにのみアクセスし,標的攻撃を行うことを目的とした決定ベースのブラックボックス攻撃という,困難なシナリオに焦点を当てる。
3段階のプロセス textitAsk, Attend, Attack は textitAAA と呼ばれ、解決者と協調するために提案されている。
Transformer-basedおよびCNN+RNN-based image-to-text modelの実験結果から,提案したtextitAAAの有効性が確認された。
論文 参考訳(メタデータ) (2024-08-16T19:35:06Z) - Attack on Scene Flow using Point Clouds [9.115508086522887]
本稿では,シーンフローネットワークに特化して,敵のホワイトボックス攻撃を導入する。
実験結果から, 生成した逆数例は平均点誤差において最大33.7の相対劣化が得られることがわかった。
この研究は、一次元または色チャネルの点雲を標的とする攻撃が、平均的な端点誤差に与える影響も明らかにしている。
論文 参考訳(メタデータ) (2024-04-21T11:21:27Z) - Cost Aware Untargeted Poisoning Attack against Graph Neural Networks, [5.660584039688214]
本稿では,攻撃予算の配分を改善するため,コスト・アウェア・ポジショニング・アタック(CA-アタック)と呼ばれる新たなアタック・ロス・フレームワークを提案する。
実験の結果,提案したCA攻撃は既存の攻撃戦略を大幅に強化することが示された。
論文 参考訳(メタデータ) (2023-12-12T10:54:02Z) - Object-fabrication Targeted Attack for Object Detection [54.10697546734503]
物体検出の敵攻撃は 標的攻撃と未標的攻撃を含む。
新たなオブジェクトファブリケーションターゲット攻撃モードは、特定のターゲットラベルを持つ追加の偽オブジェクトをファブリケートする検出器を誤解させる可能性がある。
論文 参考訳(メタデータ) (2022-12-13T08:42:39Z) - Adversarial Camouflage for Node Injection Attack on Graphs [64.5888846198005]
グラフニューラルネットワーク(GNN)に対するノードインジェクション攻撃は、GNNのパフォーマンスを高い攻撃成功率で低下させる能力のため、近年注目を集めている。
本研究は,これらの攻撃が現実的なシナリオでしばしば失敗することを示す。
これを解決するため,我々はカモフラージュノードインジェクション攻撃(camouflage node Injection attack)に取り組んだ。
論文 参考訳(メタデータ) (2022-08-03T02:48:23Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
敵は、ディープニューラルネットワークが誤った分類結果を生成するような摂動画像を攻撃する。
自然の多目的シーンに対する敵対的攻撃を防御するための有望なアプローチは、文脈整合性チェックを課すことである。
本稿では,コンテキスト整合性チェックを回避可能な,コンテキスト整合性攻撃を生成するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-29T04:33:06Z) - FooBaR: Fault Fooling Backdoor Attack on Neural Network Training [5.639451539396458]
ニューラルネットワークのトレーニングフェーズ中に障害を注入することで,新たな攻撃パラダイムを探索する。
このような攻撃は、トレーニングフェーズの障害攻撃がネットワークにバックドアを注入し、攻撃者が不正な入力を生成できるようにするような、不正なバックドアと呼ばれる。
論文 参考訳(メタデータ) (2021-09-23T09:43:19Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。