Resolving non-perturbative renormalization of a microwave-dressed weakly
anharmonic superconducting qubit
- URL: http://arxiv.org/abs/2212.05847v2
- Date: Sat, 11 Nov 2023 09:30:10 GMT
- Title: Resolving non-perturbative renormalization of a microwave-dressed weakly
anharmonic superconducting qubit
- Authors: Byoung-moo Ann, Sercan Deve, and Gary A. Steele
- Abstract summary: We study a microwave-dressed transmon coupled to a single quantized mode over a wide range of driving parameters.
Unlike previous theoretical works, we establish a non-recursive, and non-Floquet theory beyond the perturbative regimes.
Our work will also contribute to fast quantum gate implementation, qubit parameter engineering, and fundamental studies on driven nonlinear systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Microwave driving is a ubiquitous technique for superconducting qubits
(SCQs), but the dressed states description based on the conventionally used
perturbation theory cannot fully capture the dynamics in the strong driving
limit. Comprehensive studies beyond these approximations applicable to
transmon-based circuit quantum electrodynamics (QED) systems are unfortunately
rare as the relevant works have been mainly limited to single-mode or two-state
systems. In this work, we investigate a microwave-dressed transmon coupled to a
single quantized mode over a wide range of driving parameters. We reveal that
the interaction between the transmon and resonator as well as the properties of
each mode is significantly renormalized in the strong driving limit. Unlike
previous theoretical works, we establish a non-recursive, and non-Floquet
theory beyond the perturbative regimes, which excellently quantifies the
experiments. This work expands our fundamental understanding of dressed cavity
QED-like systems beyond the conventional approximations. Our work will also
contribute to fast quantum gate implementation, qubit parameter engineering,
and fundamental studies on driven nonlinear systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Decoding the drive-bath interplay: A guideline to enhance
superconductivity [2.8337642533752083]
We show how a drive which anti-commutes with the superconducting gap operator generically induces an unusual particle-hole structure in the spectral functions.
This structure can be harnessed to enhance the superconducting transition temperature.
Our work paves the way for further studies for driven-dissipative engineering of exotic phases of matter in solid-state systems.
arXiv Detail & Related papers (2023-06-05T13:26:09Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Maxwell-Schr\"{o}dinger Modeling of Superconducting Qubits Coupled to
Transmission Line Networks [0.0]
In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states.
Currently, the design of these microwave pulses use simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse.
We present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schr"odinger method for describing these self-consistent dynamics.
arXiv Detail & Related papers (2022-10-14T16:11:55Z) - Bound states in microwave QED: Crossover from waveguide to cavity regime [0.0]
Light-matter interaction at the single-quantum level is the heart of many regimes of high fundamental importance to modern quantum technologies.
We formulate a unifying theory which under a minimal set of standard approximations accounts for physical boundaries of a system.
Our theory can be straightforwardly extended to other waveguides such as the photonic crystal and coupled cavity arrays.
arXiv Detail & Related papers (2022-08-01T01:19:47Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Analytic Design of Accelerated Adiabatic Gates in Realistic Qubits:
General Theory and Applications to Superconducting Circuits [0.0]
"Shortcuts to adiabaticity" is a general method for speeding up adiabatic quantum protocols.
We develop an $analytic$ approach that allows one to go beyond these limitations.
We show in detail how our ideas can be used to analytically design high-fidelity single-qubit "tripod" gates in a realistic superconducting fluxonium qubit.
arXiv Detail & Related papers (2021-02-04T02:11:06Z) - State leakage during fast decay and control of a superconducting
transmon qubit [0.0]
We study the dynamics and control of a superconducting transmon using the numerically exact Liouville-von Neumann equation approach.
We find significant short-time state leakage due to the strong coupling to the bath.
arXiv Detail & Related papers (2020-11-20T15:13:50Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.