Theory of Quasiparticle Generation by Microwave Drives in Superconducting Qubits
- URL: http://arxiv.org/abs/2505.00773v1
- Date: Thu, 01 May 2025 18:07:13 GMT
- Title: Theory of Quasiparticle Generation by Microwave Drives in Superconducting Qubits
- Authors: Shoumik Chowdhury, Max Hays, Shantanu R. Jha, Kyle Serniak, Terry P. Orlando, Jeffrey A. Grover, William D. Oliver,
- Abstract summary: Microwave drives are commonly employed to control superconducting quantum circuits.<n>We present a theoretical framework for calculating the rates of multi-photon-assisted pair-breaking transitions induced by microwave drives.
- Score: 0.24091079613649843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Microwave drives are commonly employed to control superconducting quantum circuits, enabling qubit gates, readout, and parametric interactions. As the drive frequencies are typically an order of magnitude smaller than (twice) the superconducting gap, it is generally assumed that such drives do not disturb the BCS ground state. However, sufficiently strong drives can activate multi-photon pair-breaking processes that generate quasiparticles and result in qubit errors. In this work, we present a theoretical framework for calculating the rates of multi-photon-assisted pair-breaking transitions induced by both charge- and flux-coupled microwave drives. Through illustrative examples, we show that drive-induced QP generation may impact novel high-frequency dispersive readout architectures, as well as Floquet-engineered superconducting circuits operating under strong driving conditions.
Related papers
- Quasiparticle-induced decoherence of a driven superconducting qubit [0.0]
We develop a theory for two quasiparticle-induced decoherence mechanisms of a driven superconducting qubit.<n>In the first mechanism, an existing quasiparticle (QP) tunnels across the qubit's Josephson junction while simultaneously absorbing a qubit excitation and one (or several) photons from the drive.<n>In the second mechanism, a qubit transition occurs during the non-linear absorption process converting multiple drive quanta into a pair of new QPs.
arXiv Detail & Related papers (2025-05-01T18:00:42Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Resolving non-perturbative renormalization of a microwave-dressed weakly
anharmonic superconducting qubit [0.0]
We study a microwave-dressed transmon coupled to a single quantized mode over a wide range of driving parameters.
Unlike previous theoretical works, we establish a non-recursive, and non-Floquet theory beyond the perturbative regimes.
Our work will also contribute to fast quantum gate implementation, qubit parameter engineering, and fundamental studies on driven nonlinear systems.
arXiv Detail & Related papers (2022-12-12T12:25:02Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - A fast and large bandwidth superconducting variable coupler [0.0]
Superconducting Josephson junction-based couplers can be designed for dissipation-free operation with fast switching.
These enable on-chip, quantum-coherent routing of microwave photons.
arXiv Detail & Related papers (2020-11-18T18:20:26Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.