論文の概要: Parameter-Efficient Finetuning of Transformers for Source Code
- arxiv url: http://arxiv.org/abs/2212.05901v1
- Date: Mon, 12 Dec 2022 14:00:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-13 15:34:20.407815
- Title: Parameter-Efficient Finetuning of Transformers for Source Code
- Title(参考訳): ソースコード変換器のパラメータ効率向上
- Authors: Shamil Ayupov and Nadezhda Chirkova
- Abstract要約: 事前訓練されたトランスフォーマーは、様々なコード処理タスクで最先端のパフォーマンスを達成するが、デプロイするには大きすぎる可能性がある。
NLPタスクで最初にテストされたアダプタとLoRAという,広く使用されている2つのアプローチを試した。
効率的な微調整アプローチは、コード理解タスクにおいて、標準的な完全微調整よりも同等または高いパフォーマンスを達成することができるが、コード生成タスクでは、完全な微調整を実行する。
- 参考スコア(独自算出の注目度): 11.858514933732305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretrained Transformers achieve state-of-the-art performance in various
code-processing tasks but may be too large to be deployed. As software
development tools often incorporate modules for various purposes which may
potentially use a single instance of the pretrained model, it appears relevant
to utilize parameter-efficient fine-tuning for the pretrained models of code.
In this work, we test two widely used approaches, adapters and LoRA, which were
initially tested on NLP tasks, on four code-processing tasks. We find that
though the efficient fine-tuning approaches may achieve comparable or higher
performance than the standard, full, fine-tuning in code understanding tasks,
they underperform full fine-tuning in code-generative tasks. These results
underline the importance of testing efficient fine-tuning approaches on other
domains than NLP and motivate future research in efficient fine-tuning for
source code.
- Abstract(参考訳): 事前訓練されたトランスフォーマーは、様々なコード処理タスクで最先端のパフォーマンスを達成するが、デプロイするには大きすぎる可能性がある。
ソフトウェア開発ツールは、事前訓練されたモデルの単一インスタンスを使用する可能性がある様々な目的のためにモジュールを組み込むことが多いため、事前訓練されたコードのモデルに対してパラメータ効率の良い微調整を利用する必要があると思われる。
本研究では,NLPタスクで最初にテストされたアダプタとLoRAの2つのアプローチを4つのコード処理タスクでテストする。
効率的な微調整アプローチは、標準的な、コード理解タスクの完全な微調整と同等あるいは高いパフォーマンスを達成できますが、コード生成タスクの完全な微調整を過小評価しています。
これらの結果は、NLP以外の領域で効率的な微調整アプローチをテストすることの重要性を浮き彫りにし、ソースコードの効率的な微調整における将来の研究を動機付けている。
関連論文リスト
- Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study [3.5189934649278922]
GitHub Copilotのような大規模言語モデル(LLM)は、微調整なしで現実世界のタスクに苦労する。
本稿では,LoRA, (IA)3, およびプロンプトチューニングを含む各種PEFT法について検討する。
その結果,PEFT法は単体テスト生成のための完全微調整に匹敵する性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-11-04T09:03:18Z) - CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - MFTCoder: Boosting Code LLMs with Multitask Fine-Tuning [28.12788291168137]
複数のタスクを同時に並列に微調整できるマルチタスクファインチューニングフレームワーク MFTcoder を提案する。
実験により、我々のマルチタスクファインチューニングアプローチは、単一タスクにおける個々のファインチューニングと、混合タスクにおけるファインチューニングの両方より優れていることが示された。
論文 参考訳(メタデータ) (2023-11-04T02:22:40Z) - Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning [30.251155072822055]
Prototype-based HyperAdapter (PHA)は、アダプタチューニングとハイパーネットワーク上に構築された新しいフレームワークである。
サンプル効率のよい条件付きモジュールを生成するために、インスタンスdenseレトリバーとプロトタイプのハイパーネットワークを導入する。
PHAは、トレーニング可能なパラメータ、ストリームタスクの精度、サンプル効率のトレードオフをより良くすることを示す。
論文 参考訳(メタデータ) (2023-10-18T02:42:17Z) - Parameter Efficient Multi-task Model Fusion with Partial Linearization [97.23530944186078]
パラメータ効率のよい微調整技術において,マルチタスク融合を改善する新しい手法を提案する。
提案手法は, アダプタモジュールのみを部分的に線形化し, 線形化アダプタにタスク演算を適用する。
我々の部分線形化手法は、複数のタスクをより効果的に1つのモデルに融合させることを可能にしている。
論文 参考訳(メタデータ) (2023-10-07T08:55:54Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
新しいタスクのための微調整された大規模な事前学習型ビジョンモデルは、パラメーター集約化が進んでいる。
本稿では,大規模なトランスフォーマーモデル適応のための効果的かつ効率的なビジュアルプロンプトチューニング(E2VPT)手法を提案する。
提案手法は2つのベンチマークにおいて,最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-07-25T19:03:21Z) - Towards Efficient Fine-tuning of Pre-trained Code Models: An
Experimental Study and Beyond [52.656743602538825]
微調整された事前訓練されたコードモデルは、大きな計算コストを発生させる。
我々は、レイヤーワイドで事前訓練された表現と、微調整中に符号化されたコード知識に何が起こるのかを実験的に検討する。
本稿では,レイヤ凍結により事前学習したコードモデルを効率的に微調整するTellyを提案する。
論文 参考訳(メタデータ) (2023-04-11T13:34:13Z) - Execution-based Code Generation using Deep Reinforcement Learning [8.085533911328577]
PPOCoderは、事前訓練されたPLモデルとプロキシポリシー最適化を組み合わせた、コード生成のための新しいフレームワークである。
PPOCoderは、外部コード固有の知識をモデル最適化プロセスにシームレスに統合する。
PPOCoderはタスクに依存しない、モデルに依存しないフレームワークで、さまざまなコード生成タスクやPLで使用できます。
論文 参考訳(メタデータ) (2023-01-31T18:02:26Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
本稿では,PeterRecと呼ばれるパラメータ効率のよい移動学習アーキテクチャを提案する。
PeterRecは、トレーニング済みのパラメータを、一連の再学習ニューラルネットワークを注入することで、微調整中に修正されないようにする。
我々は5つの下流タスクにおいて学習したユーザ表現の有効性を示すために、広範囲な実験的アブレーションを行う。
論文 参考訳(メタデータ) (2020-01-13T14:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。