Opponent Modeling in Multiplayer Imperfect-Information Games
- URL: http://arxiv.org/abs/2212.06027v4
- Date: Mon, 29 Jul 2024 04:07:44 GMT
- Title: Opponent Modeling in Multiplayer Imperfect-Information Games
- Authors: Sam Ganzfried, Kevin A. Wang, Max Chiswick,
- Abstract summary: We present an approach for opponent modeling in multiplayer imperfect-information games.
We run experiments against a variety of real opponents and exact Nash equilibrium strategies in three-player Kuhn poker.
Our algorithm significantly outperforms all of the agents, including the exact Nash equilibrium strategies.
- Score: 1.024113475677323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real-world settings agents engage in strategic interactions with multiple opposing agents who can employ a wide variety of strategies. The standard approach for designing agents for such settings is to compute or approximate a relevant game-theoretic solution concept such as Nash equilibrium and then follow the prescribed strategy. However, such a strategy ignores any observations of opponents' play, which may indicate shortcomings that can be exploited. We present an approach for opponent modeling in multiplayer imperfect-information games where we collect observations of opponents' play through repeated interactions. We run experiments against a wide variety of real opponents and exact Nash equilibrium strategies in three-player Kuhn poker and show that our algorithm significantly outperforms all of the agents, including the exact Nash equilibrium strategies.
Related papers
- All by Myself: Learning Individualized Competitive Behaviour with a
Contrastive Reinforcement Learning optimization [57.615269148301515]
In a competitive game scenario, a set of agents have to learn decisions that maximize their goals and minimize their adversaries' goals at the same time.
We propose a novel model composed of three neural layers that learn a representation of a competitive game, learn how to map the strategy of specific opponents, and how to disrupt them.
Our experiments demonstrate that our model achieves better performance when playing against offline, online, and competitive-specific models, in particular when playing against the same opponent multiple times.
arXiv Detail & Related papers (2023-10-02T08:11:07Z) - ApproxED: Approximate exploitability descent via learned best responses [61.17702187957206]
We study the problem of finding an approximate Nash equilibrium of games with continuous action sets.
We propose two new methods that minimize an approximation of exploitability with respect to the strategy profile.
arXiv Detail & Related papers (2023-01-20T23:55:30Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
We study the problem of computing an approximate Nash equilibrium of continuous-action game without access to gradients.
We model players' strategies using artificial neural networks.
This paper is the first to solve general continuous-action games with unrestricted mixed strategies and without any gradient information.
arXiv Detail & Related papers (2022-11-29T05:16:41Z) - Nash Equilibria and Pitfalls of Adversarial Training in Adversarial
Robustness Games [51.90475640044073]
We study adversarial training as an alternating best-response strategy in a 2-player zero-sum game.
On the other hand, a unique pure Nash equilibrium of the game exists and is provably robust.
arXiv Detail & Related papers (2022-10-23T03:21:01Z) - Game Theoretic Rating in N-player general-sum games with Equilibria [26.166859475522106]
We propose novel algorithms suitable for N-player, general-sum rating of strategies in normal-form games according to the payoff rating system.
This enables well-established solution concepts, such as equilibria, to be leveraged to efficiently rate strategies in games with complex strategic interactions.
arXiv Detail & Related papers (2022-10-05T12:33:03Z) - Reinforcement Learning Agents in Colonel Blotto [0.0]
We focus on a specific instance of agent-based models, which uses reinforcement learning (RL) to train the agent how to act in its environment.
We find that the RL agent handily beats a single opponent, and still performs quite well when the number of opponents are increased.
We also analyze the RL agent and look at what strategies it has arrived by looking at the actions that it has given the highest and lowest Q-values.
arXiv Detail & Related papers (2022-04-04T16:18:01Z) - On the Impossibility of Convergence of Mixed Strategies with No Regret
Learning [10.515544361834241]
We study convergence properties of the mixed strategies that result from a general class of optimal no regret learning strategies.
We consider the class of strategies whose information set at each step is the empirical average of the opponent's realized play.
arXiv Detail & Related papers (2020-12-03T18:02:40Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
We consider a repeated sequential game between a learner, who plays first, and an opponent who responds to the chosen action.
We propose a novel algorithm for the learner when playing against an adversarial sequence of opponents.
Our results include algorithm's regret guarantees that depend on the regularity of the opponent's response.
arXiv Detail & Related papers (2020-07-10T09:33:05Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
We investigate the increasingly important and common game-solving setting where we do not have an explicit description of the game but only oracle access to it through gameplay.
During a limited-duration learning phase, the algorithm can control the actions of both players in order to try to learn the game and how to play it well.
Our motivation is to quickly learn strategies that have low exploitability in situations where evaluating the payoffs of a queried strategy profile is costly.
arXiv Detail & Related papers (2020-02-24T20:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.