Implicit Convolutional Kernels for Steerable CNNs
- URL: http://arxiv.org/abs/2212.06096v3
- Date: Fri, 27 Oct 2023 14:31:32 GMT
- Title: Implicit Convolutional Kernels for Steerable CNNs
- Authors: Maksim Zhdanov, Nico Hoffmann and Gabriele Cesa
- Abstract summary: Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and transformations of an origin-preserving group $G$.
We propose using implicit neural representation via multi-layer perceptrons (MLPs) to parameterize $G$-steerable kernels.
We prove the effectiveness of our method on multiple tasks, including N-body simulations, point cloud classification and molecular property prediction.
- Score: 5.141137421503899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Steerable convolutional neural networks (CNNs) provide a general framework
for building neural networks equivariant to translations and transformations of
an origin-preserving group $G$, such as reflections and rotations. They rely on
standard convolutions with $G$-steerable kernels obtained by analytically
solving the group-specific equivariance constraint imposed onto the kernel
space. As the solution is tailored to a particular group $G$, implementing a
kernel basis does not generalize to other symmetry transformations,
complicating the development of general group equivariant models. We propose
using implicit neural representation via multi-layer perceptrons (MLPs) to
parameterize $G$-steerable kernels. The resulting framework offers a simple and
flexible way to implement Steerable CNNs and generalizes to any group $G$ for
which a $G$-equivariant MLP can be built. We prove the effectiveness of our
method on multiple tasks, including N-body simulations, point cloud
classification and molecular property prediction.
Related papers
- Lie Group Decompositions for Equivariant Neural Networks [12.139222986297261]
We show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations.
We evaluate the robustness and out-of-distribution generalisation capability of our model on the benchmark affine-invariant classification task.
arXiv Detail & Related papers (2023-10-17T16:04:33Z) - Geometrical aspects of lattice gauge equivariant convolutional neural
networks [0.0]
Lattice gauge equivariant convolutional neural networks (L-CNNs) are a framework for convolutional neural networks that can be applied to non-Abelian lattice gauge theories.
arXiv Detail & Related papers (2023-03-20T20:49:08Z) - How Jellyfish Characterise Alternating Group Equivariant Neural Networks [0.0]
We find a basis for the learnable, linear, $A_n$-equivariant layer functions between such tensor power spaces in the standard basis of $mathbbRn$.
We also describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
arXiv Detail & Related papers (2023-01-24T17:39:10Z) - Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and
Group Convolution [90.67482899242093]
A wide range of techniques have been proposed in recent years for designing neural networks for 3D data that are equivariant under rotation and translation of the input.
We provide an in-depth analysis of both methods and their equivalence and relate the two constructions to multiview convolutional networks.
We also derive new TFN non-linearities from our equivalence principle and test them on practical benchmark datasets.
arXiv Detail & Related papers (2022-11-29T03:42:11Z) - Equivariant Transduction through Invariant Alignment [71.45263447328374]
We introduce a novel group-equivariant architecture that incorporates a group-in hard alignment mechanism.
We find that our network's structure allows it to develop stronger equivariant properties than existing group-equivariant approaches.
We additionally find that it outperforms previous group-equivariant networks empirically on the SCAN task.
arXiv Detail & Related papers (2022-09-22T11:19:45Z) - A General Framework For Proving The Equivariant Strong Lottery Ticket
Hypothesis [15.376680573592997]
Modern neural networks are capable of incorporating more than just translation symmetry.
We generalize the Strong Lottery Ticket Hypothesis (SLTH) to functions that preserve the action of the group $G$.
We prove our theory by overparametrized $textE(2)$-steerable CNNs and message passing GNNs.
arXiv Detail & Related papers (2022-06-09T04:40:18Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups [115.58550697886987]
We provide a completely general algorithm for solving for the equivariant layers of matrix groups.
In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons equivariant to multiple groups that have never been tackled before.
Our approach outperforms non-equivariant baselines, with applications to particle physics and dynamical systems.
arXiv Detail & Related papers (2021-04-19T17:21:54Z) - A New Neural Network Architecture Invariant to the Action of Symmetry
Subgroups [11.812645659940237]
We propose a $G$-invariant neural network that approximates functions invariant to the action of a given permutation subgroup on input data.
The key element of the proposed network architecture is a new $G$-invariant transformation module, which produces a $G$-invariant latent representation of the input data.
arXiv Detail & Related papers (2020-12-11T16:19:46Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.