Efficient simulation of open quantum systems coupled to a reservoir
through multiple channels
- URL: http://arxiv.org/abs/2212.06099v1
- Date: Mon, 12 Dec 2022 18:16:01 GMT
- Title: Efficient simulation of open quantum systems coupled to a reservoir
through multiple channels
- Authors: Kai T. Liu, Jiaxi Wu, Peng Zhang, and David N. Beratan
- Abstract summary: We use the chain mapping strategy in the interaction picture to study systems linearly coupled to a harmonic bath through multiple channels.
We simulate singlet fission using a generalized spin-boson Hamiltonian.
This approach generalizes the chain mapping scheme to the case of multi-channel system-bath couplings.
- Score: 4.106703080056981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The simulation of open quantum systems coupled to a reservoir through
multiple channels remains a substantial challenge. This kind of open quantum
system arises when considering the radiationless decay of excited states that
are coupled to molecular vibrations, for example. We use the chain mapping
strategy in the interaction picture to study systems linearly coupled to a
harmonic bath through multiple interaction channels. In the interaction
picture, the bare bath Hamiltonian is removed by a unitary transformation (the
system-bath interactions remain), and a chain mapping transforms the bath modes
to a new basis. The transformed Hamiltonian contains time-dependent local
system-bath couplings. The open quantum system is coupled to a limited number
of (transformed) bath modes in the new basis. As such, the entanglement
generated by the system-bath interactions is local, making efficient dynamical
simulations possible with matrix product states. We use this approach to
simulate singlet fission, using a generalized spin-boson Hamiltonian. The
electronic states are coupled to a vibrational bath both diagonally and
off-diagonally. This approach generalizes the chain mapping scheme to the case
of multi-channel system-bath couplings, enabling the efficient simulation of
this class of open quantum systems using matrix product states.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Open quantum systems with non-commuting coupling operators: An analytic approach [0.0]
We present an analytic approach to treat open quantum systems strongly coupled to multiple environments via noncommuting system operators.
For a spin impurity coupled to both dissipative and decoherring environments, the effective Hamiltonian predicts the suppression of relaxation by decoherence.
arXiv Detail & Related papers (2024-08-03T20:56:35Z) - Quantum simulation in hybrid transmission lines [55.2480439325792]
We propose a hybrid platform, in which a right-handed transmission line is connected to a left-handed transmission line by means of a superconducting quantum interference device (SQUID)
We show that, by activating specific resonance conditions, this platform can be used as a quantum simulator of different phenomena in quantum optics, multimode quantum systems and quantum thermodynamics.
arXiv Detail & Related papers (2024-03-13T13:15:14Z) - Unifying Collisional Models and the Monte Carlo Metropolis Method:
Algorithms for Dynamics of Open Quantum Systems [0.0]
Collisional models are a category of microscopic open quantum system models that have seen growing use in studying quantum thermalization.
We demonstrate that, when each bath ancilla is prepared in a thermal state with a discrete spectrum that matches the energy eigenstate transitions of the system, the system dynamics generated by the collisional model framework are identical to those generated under the Metropolis algorithm.
arXiv Detail & Related papers (2024-03-01T00:01:22Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Chiral current in Floquet cavity-magnonics [0.0]
Floquet engineering can induce complex collective behaviour and interesting synthetic gauge-field in quantum systems.
We realize a chiral state-transfer in a cavity-magnonic system using a Floquet drive on frequencies of the magnon modes.
arXiv Detail & Related papers (2022-06-20T02:33:14Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Improved Efficiency of Open Quantum System Simulations Using Matrix
Products States in the Interaction Picture [3.7530059578901147]
Theory of open quantum systems is of value in condensed matter theory, cavity quantum electrodynamics, nanosciences and biophysics.
The computational cost of simulating open quantum systems remains high when the bath is excited to high-lying quantum states.
We develop an approach to reduce the computational costs in such cases.
arXiv Detail & Related papers (2021-11-29T02:42:28Z) - Exact dynamics of non-additive environments in non-Markovian open
quantum systems [0.0]
We present a numerically-exact and efficient technique for tackling the problem of capturing multi-bath system dynamics.
We test the method by applying it to a simple model system that exhibits non-additive behaviour.
We uncover a new regime where the quantum Zeno effect leads to a fully mixed state of the electronic system.
arXiv Detail & Related papers (2021-09-17T10:08:37Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.