Open quantum systems with non-commuting coupling operators: An analytic approach
- URL: http://arxiv.org/abs/2408.01865v1
- Date: Sat, 3 Aug 2024 20:56:35 GMT
- Title: Open quantum systems with non-commuting coupling operators: An analytic approach
- Authors: Jakub Garwoła, Dvira Segal,
- Abstract summary: We present an analytic approach to treat open quantum systems strongly coupled to multiple environments via noncommuting system operators.
For a spin impurity coupled to both dissipative and decoherring environments, the effective Hamiltonian predicts the suppression of relaxation by decoherence.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an analytic approach to treat open quantum systems strongly coupled to multiple environments via noncommuting system operators, a prime example is a qubit concurrently coupled to both decoherring and dissipative baths. Our approach, which accommodates strong system-bath couplings, generalizes the recently developed reaction-coordinate polaron transform method [PRX Quantum ${\bf 4}$, 020307 (2023)] to handle couplings to baths via noncommuting system operators. This approach creates an effective Hamiltonian that reveals the cooperative effect of the baths on the system. For a spin impurity coupled to both dissipative and decoherring environments, the effective Hamiltonian predicts the suppression of relaxation by decoherence -- a phenomenon previously observed in simulations but lacking a theoretical foundation. We also apply the method to an ensemble of spins coupled to local baths through noncommuting operators, demonstrating the engineering of the Kitaev XY spin chain interaction. Noncommutativity is a feature of quantum systems; future prospects of our approach include the study of thermal machines that leverage such genuine quantum effects.
Related papers
- Bath Dynamical Decoupling with a Quantum Channel [44.99833362998488]
We generalize the notion of dynamical decoupling to repeated kicks with a quantum channel.
We find that bath dynamical decoupling works if and only if the kick is ergodic.
arXiv Detail & Related papers (2024-09-27T07:47:52Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Bath-induced interactions and transient dynamics in open quantum systems at strong coupling: Effective Hamiltonian approach [0.0]
We employ the recently-developed method dubbed the effective Hamiltonian theory to understand the dynamics of system-bath configurations.
Through a combination of mapping steps and truncation, the effective Hamiltonian theory offers both analytical insights into signatures of strong couplings.
We show that although the former overlooks non-Markovian features in the transient equilibration dynamics, it correctly captures non-perturbative bath-generated couplings.
arXiv Detail & Related papers (2024-03-06T00:47:38Z) - Effective Hamiltonian theory of open quantum systems at strong coupling [0.0]
We present the reaction-coordinate polaron-transform (RCPT) framework for generating effective Hamiltonian models.
Examples in this work include canonical models for quantum thermalization, charge and energy transport at the nanoscale, performance bounds of quantum thermodynamical machines.
arXiv Detail & Related papers (2022-11-10T17:10:33Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Exact dynamics of non-additive environments in non-Markovian open
quantum systems [0.0]
We present a numerically-exact and efficient technique for tackling the problem of capturing multi-bath system dynamics.
We test the method by applying it to a simple model system that exhibits non-additive behaviour.
We uncover a new regime where the quantum Zeno effect leads to a fully mixed state of the electronic system.
arXiv Detail & Related papers (2021-09-17T10:08:37Z) - Strong coupling effects in quantum thermal transport with the reaction
coordinate method [0.0]
We present a semi-analytical approach for studying quantum thermal energy transport beyond the weak system-bath coupling regime.
In our technique, applied to the nonequilibrium spin-boson model, a collective coordinate is extracted from each environment and added into the system to construct an enlarged system.
We demonstrate that we properly capture strong system-bath signatures such as the turnover behavior of the heat current as a function of system-bath coupling strength.
arXiv Detail & Related papers (2021-03-09T19:15:56Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Nonequilibrium Nonlinear Open Quantum Systems I. Functional Perturbative
Analysis of a Weakly Anharmonic Oscillator [0.0]
We introduce a functional perturbative method for treating weakly nonlinear systems coupled with a quantum field bath.
We identify a fluctuation-dissipation relation based on the nonequilibrium dynamics of this nonlinear open quantum system.
The results presented here are useful for studying the nonequilibrium physical processes of nonlinear quantum systems such as heat transfer or electron transport.
arXiv Detail & Related papers (2019-12-30T03:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.