Pixel is All You Need: Adversarial Trajectory-Ensemble Active Learning
for Salient Object Detection
- URL: http://arxiv.org/abs/2212.06493v1
- Date: Tue, 13 Dec 2022 11:18:08 GMT
- Title: Pixel is All You Need: Adversarial Trajectory-Ensemble Active Learning
for Salient Object Detection
- Authors: Zhenyu Wu, Lin Wang, Wei Wang, Qing Xia, Chenglizhao Chen, Aimin Hao,
Shuo Li
- Abstract summary: It is unclear whether a saliency model trained with weakly-supervised data can achieve the equivalent performance of its fully-supervised version.
We propose a novel yet effective adversarial trajectory-ensemble active learning (ATAL)
Experimental results show that our ATAL can find such a point-labeled dataset, where a saliency model trained on it obtained $97%$ -- $99%$ performance of its fully-supervised version with only ten annotated points per image.
- Score: 40.97103355628434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although weakly-supervised techniques can reduce the labeling effort, it is
unclear whether a saliency model trained with weakly-supervised data (e.g.,
point annotation) can achieve the equivalent performance of its
fully-supervised version. This paper attempts to answer this unexplored
question by proving a hypothesis: there is a point-labeled dataset where
saliency models trained on it can achieve equivalent performance when trained
on the densely annotated dataset. To prove this conjecture, we proposed a novel
yet effective adversarial trajectory-ensemble active learning (ATAL). Our
contributions are three-fold: 1) Our proposed adversarial attack triggering
uncertainty can conquer the overconfidence of existing active learning methods
and accurately locate these uncertain pixels. {2)} Our proposed
trajectory-ensemble uncertainty estimation method maintains the advantages of
the ensemble networks while significantly reducing the computational cost. {3)}
Our proposed relationship-aware diversity sampling algorithm can conquer
oversampling while boosting performance. Experimental results show that our
ATAL can find such a point-labeled dataset, where a saliency model trained on
it obtained $97\%$ -- $99\%$ performance of its fully-supervised version with
only ten annotated points per image.
Related papers
- Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning [49.417414031031264]
This paper studies learning fair encoders in a self-supervised learning setting.
All data are unlabeled and only a small portion of them are annotated with sensitive attributes.
arXiv Detail & Related papers (2024-06-09T08:11:12Z) - Certified $\ell_2$ Attribution Robustness via Uniformly Smoothed Attributions [20.487079380753876]
We propose a uniform smoothing technique that augments the vanilla attributions by noises uniformly sampled from a certain space.
It is proved that, for all perturbations within the attack region, the cosine similarity between uniformly smoothed attribution of perturbed sample and the unperturbed sample is guaranteed to be lower bounded.
arXiv Detail & Related papers (2024-05-10T09:56:02Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Uncertainty in Contrastive Learning: On the Predictability of Downstream
Performance [7.411571833582691]
We study whether the uncertainty of such a representation can be quantified for a single datapoint in a meaningful way.
We show that this goal can be achieved by directly estimating the distribution of the training data in the embedding space.
arXiv Detail & Related papers (2022-07-19T15:44:59Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
We propose a weakly- and semi-supervised object detection framework (WSSOD)
An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images.
The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings.
arXiv Detail & Related papers (2021-05-21T11:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.