Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning
- URL: http://arxiv.org/abs/2406.05686v1
- Date: Sun, 9 Jun 2024 08:11:12 GMT
- Title: Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning
- Authors: Qi Qi, Quanqi Hu, Qihang Lin, Tianbao Yang,
- Abstract summary: This paper studies learning fair encoders in a self-supervised learning setting.
All data are unlabeled and only a small portion of them are annotated with sensitive attributes.
- Score: 49.417414031031264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies learning fair encoders in a self-supervised learning (SSL) setting, in which all data are unlabeled and only a small portion of them are annotated with sensitive attribute. Adversarial fair representation learning is well suited for this scenario by minimizing a contrastive loss over unlabeled data while maximizing an adversarial loss of predicting the sensitive attribute over the data with sensitive attribute. Nevertheless, optimizing adversarial fair representation learning presents significant challenges due to solving a non-convex non-concave minimax game. The complexity deepens when incorporating a global contrastive loss that contrasts each anchor data point against all other examples. A central question is ``{\it can we design a provable yet efficient algorithm for solving adversarial fair self-supervised contrastive learning}?'' Building on advanced optimization techniques, we propose a stochastic algorithm dubbed SoFCLR with a convergence analysis under reasonable conditions without requring a large batch size. We conduct extensive experiments to demonstrate the effectiveness of the proposed approach for downstream classification with eight fairness notions.
Related papers
- Unsupervised Transfer Learning via Adversarial Contrastive Training [3.227277661633986]
We propose a novel unsupervised transfer learning approach using adversarial contrastive training (ACT)
Our experimental results demonstrate outstanding classification accuracy with both fine-tuned linear probe and K-NN protocol across various datasets.
arXiv Detail & Related papers (2024-08-16T05:11:52Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Active Learning in the Predict-then-Optimize Framework: A Margin-Based
Approach [5.371816551086118]
We develop a learning method that sequentially decides whether to request the "labels" of feature samples from an unlabeled data stream.
Our active learning method is the first to be directly informed by the decision error induced by the predicted parameters.
arXiv Detail & Related papers (2023-05-11T05:44:36Z) - Fair and Optimal Classification via Post-Processing [10.163721748735801]
This paper provides a complete characterization of the inherent tradeoff of demographic parity on classification problems.
We show that the minimum error rate achievable by randomized and attribute-aware fair classifiers is given by the optimal value of a Wasserstein-barycenter problem.
arXiv Detail & Related papers (2022-11-03T00:04:04Z) - AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail
Problems [102.95119281306893]
We present an early trial to explore adversarial training methods to optimize AUC.
We reformulate the AUC optimization problem as a saddle point problem, where the objective becomes an instance-wise function.
Our analysis differs from the existing studies since the algorithm is asked to generate adversarial examples by calculating the gradient of a min-max problem.
arXiv Detail & Related papers (2022-06-24T09:13:39Z) - Prototype-Anchored Learning for Learning with Imperfect Annotations [83.7763875464011]
It is challenging to learn unbiased classification models from imperfectly annotated datasets.
We propose a prototype-anchored learning (PAL) method, which can be easily incorporated into various learning-based classification schemes.
We verify the effectiveness of PAL on class-imbalanced learning and noise-tolerant learning by extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-06-23T10:25:37Z) - Derivation of Information-Theoretically Optimal Adversarial Attacks with
Applications to Robust Machine Learning [11.206758778146288]
We consider the theoretical problem of designing an optimal adversarial attack on a decision system.
We present derivations of the optimal adversarial attacks for discrete and continuous signals of interest.
We show that it is much harder to achieve adversarial attacks for minimizing mutual information when multiple redundant copies of the input signal are available.
arXiv Detail & Related papers (2020-07-28T07:45:25Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.