論文の概要: Localized Latent Updates for Fine-Tuning Vision-Language Models
- arxiv url: http://arxiv.org/abs/2212.06556v1
- Date: Tue, 13 Dec 2022 13:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 13:15:57.577337
- Title: Localized Latent Updates for Fine-Tuning Vision-Language Models
- Title(参考訳): 微調整ビジョンランゲージモデルにおける局所潜時更新
- Authors: Moritz Ibing, Isaak Lim, Leif Kobbelt
- Abstract要約: この作業では,データポイントに近いモデル予測のみを更新する,軽量なアダプタを提案する。
我々は、この比較的単純なアプローチの有効性とスピードを、数ショットの学習の文脈で示し、トレーニング中に見られるクラスと見えないクラスの両方の結果が、芸術の状況に匹敵するか、改善されるかのどちらかであることを示した。
- 参考スコア(独自算出の注目度): 15.285292154680246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although massive pre-trained vision-language models like CLIP show impressive
generalization capabilities for many tasks, still it often remains necessary to
fine-tune them for improved performance on specific datasets. When doing so, it
is desirable that updating the model is fast and that the model does not lose
its capabilities on data outside of the dataset, as is often the case with
classical fine-tuning approaches. In this work we suggest a lightweight
adapter, that only updates the models predictions close to seen datapoints. We
demonstrate the effectiveness and speed of this relatively simple approach in
the context of few-shot learning, where our results both on classes seen and
unseen during training are comparable with or improve on the state of the art.
- Abstract(参考訳): CLIPのような大規模な事前学習された視覚言語モデルは、多くのタスクに対して印象的な一般化能力を示しているが、特定のデータセットのパフォーマンスを改善するためにそれらを微調整する必要性がまだある。
そのためには、モデル更新が高速であり、古典的な微調整アプローチの場合のように、モデルがデータセット外のデータで能力を失うことはないことが望ましい。
この作業では,データポイントに近いモデル予測のみを更新する,軽量なアダプタを提案する。
この比較的単純なアプローチの有効性とスピードを,マイナショット学習の文脈で実証する。トレーニング中に見られるクラスと見えないクラスの両方での結果は,芸術の状況に匹敵するか,あるいは改善されている。
関連論文リスト
- POINTS: Improving Your Vision-language Model with Affordable Strategies [28.611705477757454]
視覚言語モデルの最新の進歩を利用して、ロバストなベースラインモデルを訓練する。
我々は、パープレキシティーを用いて事前学習データをフィルタリングし、トレーニングのための最も低いパープレキシティーデータを選択する。
視覚的なインストラクションチューニングでは、さまざまなデータセットでモデルスープを使用して、より多くのデータセットを追加することで、限界的な改善を実現しました。
論文 参考訳(メタデータ) (2024-09-07T13:41:37Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Robust Fine-Tuning of Vision-Language Models for Domain Generalization [6.7181844004432385]
ファンデーションモデルは、分散シフトの下で、印象的なゼロショット推論能力とロバスト性を持っている。
一般的な視覚言語基盤モデルCLIPの微調整のための新しいレシピを提案する。
私たちの実験では、ゼロショットCLIPは、より複雑なベンチマークでトレーニング済みのビジョンモデルのパフォーマンスと一致しないが、少数ショットCLIPの微調整は、ビジョンのみのパフォーマンスよりも優れていることを示した。
論文 参考訳(メタデータ) (2023-11-03T20:50:40Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
現在の最先端のアプローチでは、モデル予測を正確に評価するために、最大30万のモデルの大規模なアンサンブルが必要となる。
本研究では、自己教師付き学習によって事前訓練されたバックボーンの特徴空間を利用して、データ帰属を行うミニマリストベースラインに焦点を当てる。
提案手法はモデルに依存しず,大規模データセットに容易にスケールできる。
論文 参考訳(メタデータ) (2023-11-03T17:29:46Z) - Efficiently Robustify Pre-trained Models [18.392732966487582]
大規模モデルの現実的な設定に対する堅牢性は、いまだ探索されていないトピックである。
まず、異なる摂動とデータセットの下でこれらのモデルのパフォーマンスをベンチマークします。
続いて、大規模ネットワークにおいて、モデルファインチューニングに基づく既存のロバスト化スキームが拡張性に欠ける可能性について論じる。
論文 参考訳(メタデータ) (2023-09-14T08:07:49Z) - Revealing the Underlying Patterns: Investigating Dataset Similarity,
Performance, and Generalization [0.0]
教師付きディープラーニングモデルは、特定のタスクで許容可能なパフォーマンスを達成するために、大量のラベル付きデータを必要とする。
モデル動作に関する洞察を得るために、画像イメージ、データセット、画像データセット距離を確立する。
論文 参考訳(メタデータ) (2023-08-07T13:35:53Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
そこで本研究では,メモリから取得したクロスモーダルな情報を推論時に表現することで,その埋め込みを洗練できる視覚テキストモデルを提案する。
注目すべきことに、これは凍ったCLIPの上に軽量の単層核融合トランスを用いて行うことができる。
検索強化コントラスト訓練(RECO)がCLIPの性能を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-06-12T15:52:02Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
同時に、複数のアップストリームとダウンストリームのタスクで1つのモデルをトレーニングする。
共ファインタニングは、同じデータ量を使用する場合、従来のトランスファーラーニングよりも優れていることを示す。
さらに、複数のアップストリームデータセットへのアプローチを簡単に拡張して、パフォーマンスをさらに向上する方法も示しています。
論文 参考訳(メタデータ) (2022-07-08T10:25:47Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
モデルの一般化と精度に及ぼす3つの異なる適応法の影響を計測する。
2つのモデルを用いた実験では、微調整はタスクの内容と構造の両方を学習することで最もうまく機能するが、過度に適合し、新しい答えへの限定的な一般化に苦しむ。
我々は、プレフィックスチューニングのような代替適応手法が同等の精度を持つのを観察するが、解を見落とさずに一般化し、対数分割に対してより堅牢である。
論文 参考訳(メタデータ) (2021-09-07T03:13:06Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。