論文の概要: Connectivity-constrained Interactive Panoptic Segmentation
- arxiv url: http://arxiv.org/abs/2212.06756v1
- Date: Tue, 13 Dec 2022 17:36:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 15:05:51.767393
- Title: Connectivity-constrained Interactive Panoptic Segmentation
- Title(参考訳): 接続性制約付きインタラクティブパノプティカルセグメンテーション
- Authors: Ruobing Shen, Bo Tang, Andrea Lodi, Ismail Ben Ayed, Thomas Guthier
- Abstract要約: インタラクティブなパノプティクスアノテーションに対処し、画像内のすべてのオブジェクトと物の領域を1セグメントに分割する。
本稿では,各領域の接続を強制する2つのグラフベースセグメンテーションアルゴリズムについて,グローバルな最適性を確保するためのクラス認識線形プログラミング(ILP)の定式化について検討する。
- 参考スコア(独自算出の注目度): 20.63490740362823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address interactive panoptic annotation, where one segment all object and
stuff regions in an image. We investigate two graph-based segmentation
algorithms that both enforce connectivity of each region, with a notable
class-aware Integer Linear Programming (ILP) formulation that ensures global
optimum. Both algorithms can take RGB, or utilize the feature maps from any
DCNN, whether trained on the target dataset or not, as input. We then propose
an interactive, scribble-based annotation framework.
- Abstract(参考訳): 我々はインタラクティブなpanopticアノテーションに対処し、画像内のすべてのオブジェクトとモノの領域を分割する。
本稿では,各領域の接続を強制する2つのグラフベースセグメンテーションアルゴリズムと,大域的最適性を保証するilp(class-aware integer linear programming)定式化について検討する。
どちらのアルゴリズムも、ターゲットデータセットでトレーニングされたかどうかに関わらず、RGBを取るか、DCNNからフィーチャーマップを利用することができる。
次に,対話型でスクリブルなアノテーションフレームワークを提案する。
関連論文リスト
- RoboHop: Segment-based Topological Map Representation for Open-World Visual Navigation [18.053914853235142]
画像セグメントに基づく新しい環境表現を提案する。
3次元シーングラフとは異なり、セグメントをノードとする純粋に位相グラフを作成する。
これはセグメント間の永続性によって定義される「場所の連続的な感覚」を明らかにする。
論文 参考訳(メタデータ) (2024-05-09T14:17:26Z) - Interactive Segmentation for Diverse Gesture Types Without Context [19.29886866117842]
本稿では,画像のみをマークしなければならない簡易な対話型セグメンテーションタスクを提案する。
入力は、任意のジェスチャータイプを指定せずに、任意のジェスチャータイプを指定できる。
我々は,新しいタスクに適応したセグメンテーションを含む対話的セグメンテーションアルゴリズムを多数分析する。
論文 参考訳(メタデータ) (2023-07-20T01:37:32Z) - Parsing Line Segments of Floor Plan Images Using Graph Neural Networks [0.0]
接合ヒートマップを用いて線セグメントの終端を予測し,グラフニューラルネットワークを用いて線セグメントとそのカテゴリを抽出する。
提案手法では,ベクトル化された線分を出力することができ,実際の使用には後処理のステップを少なくする必要がある。
論文 参考訳(メタデータ) (2023-03-07T12:32:19Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
本研究では,様々なオープンワールドカテゴリのセマンティックオブジェクトを高密度アノテーションを使わずにセマンティックオブジェクトのセマンティックオブジェクトのセマンティック化を学習するための,新しいオープンワールドセマンティックセマンティックセマンティックセマンティクスパイプラインを提案する。
提案手法は任意のカテゴリのオブジェクトを直接分割し、3つのベンチマークデータセット上でデータラベリングを必要とするゼロショットセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2022-07-18T09:20:04Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - DenseGAP: Graph-Structured Dense Correspondence Learning with Anchor
Points [15.953570826460869]
2つの画像間の密接な対応を確立することは、基本的なコンピュータビジョンの問題である。
我々は、アンカーポイントに条件付きグラフ構造化ニューラルネットワークを用いたDense対応学習のための新しいソリューションであるDenseGAPを紹介する。
提案手法は,ほとんどのベンチマークにおいて対応学習の最先端化を図っている。
論文 参考訳(メタデータ) (2021-12-13T18:59:30Z) - BI-GCN: Boundary-Aware Input-Dependent Graph Convolution Network for
Biomedical Image Segmentation [21.912509900254364]
セグメント化タスクにグラフ畳み込みを適用し,改良されたtextitLaplacianを提案する。
本手法は,大腸内視鏡像におけるポリープの分画と光ディスク,光カップのカラーファンドス画像における画期的なアプローチよりも優れていた。
論文 参考訳(メタデータ) (2021-10-27T21:12:27Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
我々は,クロスドメイン全体的特徴共適応のための新しい逆グラフ表現適応(AGRA)フレームワークを開発した。
我々は,いくつかの一般的なベンチマークで広範囲かつ公平な評価を行い,提案したAGRAフレームワークが従来の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-03T15:00:31Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - Bidirectional Graph Reasoning Network for Panoptic Segmentation [126.06251745669107]
本稿では,BGRNet(Bidirectional Graph Reasoning Network)を導入し,前景物と背景物間のモジュラー内およびモジュラー間関係について検討する。
BGRNetはまず、インスタンスとセマンティックセグメンテーションの両方でイメージ固有のグラフを構築し、提案レベルとクラスレベルで柔軟な推論を可能にする。
論文 参考訳(メタデータ) (2020-04-14T02:32:10Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。