Uncertain Facial Expression Recognition via Multi-task Assisted
Correction
- URL: http://arxiv.org/abs/2212.07144v1
- Date: Wed, 14 Dec 2022 10:28:08 GMT
- Title: Uncertain Facial Expression Recognition via Multi-task Assisted
Correction
- Authors: Yang Liu, Xingming Zhang, Janne Kauttonen, and Guoying Zhao
- Abstract summary: We propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC.
Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch.
Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties.
- Score: 43.02119884581332
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep models for facial expression recognition achieve high performance by
training on large-scale labeled data. However, publicly available datasets
contain uncertain facial expressions caused by ambiguous annotations or
confusing emotions, which could severely decline the robustness. Previous
studies usually follow the bias elimination method in general tasks without
considering the uncertainty problem from the perspective of different
corresponding sources. In this paper, we propose a novel method of multi-task
assisted correction in addressing uncertain facial expression recognition
called MTAC. Specifically, a confidence estimation block and a weighted
regularization module are applied to highlight solid samples and suppress
uncertain samples in every batch. In addition, two auxiliary tasks, i.e.,
action unit detection and valence-arousal measurement, are introduced to learn
semantic distributions from a data-driven AU graph and mitigate category
imbalance based on latent dependencies between discrete and continuous
emotions, respectively. Moreover, a re-labeling strategy guided by
feature-level similarity constraint further generates new labels for identified
uncertain samples to promote model learning. The proposed method can flexibly
combine with existing frameworks in a fully-supervised or weakly-supervised
manner. Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate
that the MTAC obtains substantial improvements over baselines when facing
synthetic and real uncertainties and outperforms the state-of-the-art methods.
Related papers
- Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.419742575630217]
This paper introduces a novel algorithm based on H"older Divergence (HD) to enhance the reliability of multi-view learning.
Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result.
Mathematically, HD proves to better measure the distance'' between real data distribution and predictive distribution of the model.
arXiv Detail & Related papers (2024-10-29T04:29:44Z) - D2SP: Dynamic Dual-Stage Purification Framework for Dual Noise Mitigation in Vision-based Affective Recognition [32.74206402632733]
Noise arises from low-quality captures that defy logical labeling, and instances that suffer from mislabeling due to annotation bias.
We have crafted a two-stage framework aiming at textbfSeeking textbfCertain data textbfIn extensive textbfUncertain data (SCIU)
This initiative aims to purge the DFER datasets of these uncertainties, thereby ensuring that only clean, verified data is employed in training processes.
arXiv Detail & Related papers (2024-06-24T09:25:02Z) - EPL: Evidential Prototype Learning for Semi-supervised Medical Image Segmentation [0.0]
We propose Evidential Prototype Learning (EPL) to fuse voxel probability predictions from different sources and prototype fusion utilization of labeled and unlabeled data.
The uncertainty not only enables the model to self-correct predictions but also improves the guided learning process with pseudo-labels and is able to feed back into the construction of hidden features.
arXiv Detail & Related papers (2024-04-09T10:04:06Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
We propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy.
We also propose gradient alignment (GA) to balance the contributions of the mined bias-aligned and bias-conflicting samples.
Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases.
arXiv Detail & Related papers (2023-02-22T14:50:24Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
We focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images.
We propose a novel mixture of experts (MoSE) model, where each expert network estimates a distinct mode of aleatoric uncertainty.
We develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations.
arXiv Detail & Related papers (2022-12-14T16:48:21Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Self-Paced Uncertainty Estimation for One-shot Person Re-Identification [9.17071384578203]
We propose a novel Self-Paced Uncertainty Estimation Network (SPUE-Net) for one-shot Person Re-ID.
By introducing a self-paced sampling strategy, our method can estimate the pseudo-labels of unlabeled samples iteratively to expand the labeled samples.
In addition, we apply a Co-operative learning method of local uncertainty estimation combined with determinacy estimation to achieve better hidden space feature mining.
arXiv Detail & Related papers (2021-04-19T09:20:30Z) - Dive into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty
Estimation for Facial Expression Recognition [59.52434325897716]
We propose a solution, named DMUE, to address the problem of annotation ambiguity from two perspectives.
For the former, an auxiliary multi-branch learning framework is introduced to better mine and describe the latent distribution in the label space.
For the latter, the pairwise relationship of semantic feature between instances are fully exploited to estimate the ambiguity extent in the instance space.
arXiv Detail & Related papers (2021-04-01T03:21:57Z) - Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object
Detection [66.10057490293981]
We propose a data-uncertainty guided multi-phase learning method for semi-supervised object detection.
Our method behaves extraordinarily compared to baseline approaches and outperforms them by a large margin.
arXiv Detail & Related papers (2021-03-29T09:27:23Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.