Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert
- URL: http://arxiv.org/abs/2212.07328v1
- Date: Wed, 14 Dec 2022 16:48:21 GMT
- Title: Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert
- Authors: Zhitong Gao, Yucong Chen, Chuyu Zhang, Xuming He
- Abstract summary: We focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images.
We propose a novel mixture of experts (MoSE) model, where each expert network estimates a distinct mode of aleatoric uncertainty.
We develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations.
- Score: 24.216869988183092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equipping predicted segmentation with calibrated uncertainty is essential for
safety-critical applications. In this work, we focus on capturing the
data-inherent uncertainty (aka aleatoric uncertainty) in segmentation,
typically when ambiguities exist in input images. Due to the high-dimensional
output space and potential multiple modes in segmenting ambiguous images, it
remains challenging to predict well-calibrated uncertainty for segmentation. To
tackle this problem, we propose a novel mixture of stochastic experts (MoSE)
model, where each expert network estimates a distinct mode of the aleatoric
uncertainty and a gating network predicts the probabilities of an input image
being segmented in those modes. This yields an efficient two-level uncertainty
representation. To learn the model, we develop a Wasserstein-like loss that
directly minimizes the distribution distance between the MoSE and ground truth
annotations. The loss can easily integrate traditional segmentation quality
measures and be efficiently optimized via constraint relaxation. We validate
our method on the LIDC-IDRI dataset and a modified multimodal Cityscapes
dataset. Results demonstrate that our method achieves the state-of-the-art or
competitive performance on all metrics.
Related papers
- Investigating and Improving Latent Density Segmentation Models for Aleatoric Uncertainty Quantification in Medical Imaging [21.311726807879456]
In image segmentation, latent density models can be utilized to address this problem.
The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound.
We introduce mutual information updates and entropy-regularized Sinkhorn updates in the latent space to promote homogeneity across all latent dimensions.
arXiv Detail & Related papers (2023-07-31T14:09:03Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
We propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC.
Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch.
Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties.
arXiv Detail & Related papers (2022-12-14T10:28:08Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
This paper introduces a new Bayesian deep learning framework for uncertainty quantification in segmentation neural networks.
We evaluate the proposed framework on medical image segmentation data from Magnetic Resonances Imaging and Computed Tomography scans.
Our experiments on multiple benchmark datasets demonstrate that the proposed framework is more robust to noise and adversarial attacks as compared to state-of-the-art segmentation models.
arXiv Detail & Related papers (2021-11-10T22:46:05Z) - Acquisition-invariant brain MRI segmentation with informative
uncertainties [3.46329153611365]
Post-hoc multi-site correction methods exist but have strong assumptions that often do not hold in real-world scenarios.
This body of work showcases such an algorithm, that can become robust to the physics of acquisition in the context of segmentation tasks.
We demonstrate that our method not only generalises to complete holdout datasets, preserving segmentation quality, but does so while also accounting for site-specific sequence choices.
arXiv Detail & Related papers (2021-11-07T13:58:04Z) - Robustness via Uncertainty-aware Cycle Consistency [44.34422859532988]
Unpaired image-to-image translation refers to learning inter-image-domain mapping without corresponding image pairs.
Existing methods learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty.
We propose a novel probabilistic method based on Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC)
arXiv Detail & Related papers (2021-10-24T15:33:21Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.