Multiclass classification utilising an estimated algorithmic probability
prior
- URL: http://arxiv.org/abs/2212.07426v1
- Date: Wed, 14 Dec 2022 07:50:12 GMT
- Title: Multiclass classification utilising an estimated algorithmic probability
prior
- Authors: Kamaludin Dingle, Pau Batlle, Houman Owhadi
- Abstract summary: We study how algorithmic information theory, especially algorithmic probability, may aid in a machine learning task.
This work is one of the first to demonstrate how algorithmic probability can aid in a concrete, real-world, machine learning problem.
- Score: 0.5156484100374058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methods of pattern recognition and machine learning are applied extensively
in science, technology, and society. Hence, any advances in related theory may
translate into large-scale impact. Here we explore how algorithmic information
theory, especially algorithmic probability, may aid in a machine learning task.
We study a multiclass supervised classification problem, namely learning the
RNA molecule sequence-to-shape map, where the different possible shapes are
taken to be the classes. The primary motivation for this work is a proof of
concept example, where a concrete, well-motivated machine learning task can be
aided by approximations to algorithmic probability. Our approach is based on
directly estimating the class (i.e., shape) probabilities from shape
complexities, and using the estimated probabilities as a prior in a Gaussian
process learning problem. Naturally, with a large amount of training data, the
prior has no significant influence on classification accuracy, but in the very
small training data regime, we show that using the prior can substantially
improve classification accuracy. To our knowledge, this work is one of the
first to demonstrate how algorithmic probability can aid in a concrete,
real-world, machine learning problem.
Related papers
- Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
We propose a more general dynamic network that can combine both quantization and early exit dynamic network: QuEE.
Our algorithm can be seen as a form of soft early exiting or input-dependent compression.
The crucial factor of our approach is accurate prediction of the potential accuracy improvement achievable through further computation.
arXiv Detail & Related papers (2024-06-20T15:25:13Z) - Distributive Pre-Training of Generative Modeling Using Matrix-Product
States [0.0]
We consider an alternative training scheme utilizing basic tensor network operations, e.g., summation and compression.
The training algorithm is based on compressing the superposition state constructed from all the training data in product state representation.
We benchmark the algorithm on the MNIST dataset and show reasonable results for generating new images and classification tasks.
arXiv Detail & Related papers (2023-06-26T15:46:08Z) - Algorithmic failure as a humanities methodology: machine learning's
mispredictions identify rich cases for qualitative analysis [0.0]
I trained a simple machine learning algorithm to predict whether or not an action was active or passive using only information about fictional characters.
The results thus support Munk et al.'s theory that failed predictions can be productively used to identify rich cases for qualitative analysis.
Further research is needed to develop an understanding of what kinds of data the method is useful for and which kinds of machine learning are most generative.
arXiv Detail & Related papers (2023-05-19T13:24:32Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - A Simplicity Bubble Problem in Formal-Theoretic Learning Systems [1.7996150751268578]
We show that current approaches to machine learning can always be deceived, naturally or artificially, by sufficiently large datasets.
We discuss the framework and additional empirical conditions to be met in order to circumvent this deceptive phenomenon.
arXiv Detail & Related papers (2021-12-22T23:44:47Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - A Theory of Universal Learning [26.51949485387526]
We show that there are only three possible rates of universal learning.
We show that the learning curves of any given concept class decay either at an exponential, or arbitrarily slow rates.
arXiv Detail & Related papers (2020-11-09T15:10:32Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck.
By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning.
arXiv Detail & Related papers (2020-09-07T16:47:30Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Explainable AI for Classification using Probabilistic Logic Inference [9.656846523452502]
We present an explainable classification method.
Our method works by first constructing a symbolic Knowledge Base from the training data, and then performing probabilistic inferences on such Knowledge Base with linear programming.
It identifies decisive features that are responsible for a classification as explanations and produces results similar to the ones found by SHAP, a state of the artley Value based method.
arXiv Detail & Related papers (2020-05-05T11:39:23Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.