Towards fully automated deep-learning-based brain tumor segmentation: is
brain extraction still necessary?
- URL: http://arxiv.org/abs/2212.07497v1
- Date: Wed, 14 Dec 2022 20:31:43 GMT
- Title: Towards fully automated deep-learning-based brain tumor segmentation: is
brain extraction still necessary?
- Authors: Bruno Machado Pacheco, Guilherme de Souza e Cassia and Danilo Silva
- Abstract summary: We propose an automatic brain tumor segmentation pipeline and evaluate its performance with multiple BE methods.
Our experiments show that the choice of a BE method can compromise up to 15.7% of the tumor segmentation performance.
We propose training and testing tumor segmentation models on non-skull-stripped images, effectively discarding the BE step from the pipeline.
- Score: 5.743034166791608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art brain tumor segmentation is based on deep learning models
applied to multi-modal MRIs. Currently, these models are trained on images
after a preprocessing stage that involves registration, interpolation, brain
extraction (BE, also known as skull-stripping) and manual correction by an
expert. However, for clinical practice, this last step is tedious and
time-consuming and, therefore, not always feasible, resulting in
skull-stripping faults that can negatively impact the tumor segmentation
quality. Still, the extent of this impact has never been measured for any of
the many different BE methods available. In this work, we propose an automatic
brain tumor segmentation pipeline and evaluate its performance with multiple BE
methods. Our experiments show that the choice of a BE method can compromise up
to 15.7% of the tumor segmentation performance. Moreover, we propose training
and testing tumor segmentation models on non-skull-stripped images, effectively
discarding the BE step from the pipeline. Our results show that this approach
leads to a competitive performance at a fraction of the time. We conclude that,
in contrast to the current paradigm, training tumor segmentation models on
non-skull-stripped images can be the best option when high performance in
clinical practice is desired.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Robust Brain MRI Image Classification with SIBOW-SVM [1.3597551064547502]
Early detection of brain tumor types is critical for cancer prevention and treatment, ultimately improving human life expectancy.
MRI stands as the most effective technique to detect brain tumors by generating comprehensive brain images through scans.
Deep learning-based image classification methods, including CNN, face challenges in estimating class probabilities without proper model calibration.
We propose a novel brain tumor image classification method, called SIBOW-SVM, which integrates the Bag-of-Features (BoF) model with SIFT feature extraction and weighted Support Vector Machines (wSVMs)
Our results show that the new method outperforms state-of-the-art
arXiv Detail & Related papers (2023-11-15T12:26:24Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - Unsupervised Brain Tumor Segmentation with Image-based Prompts [12.525656002678856]
We propose an approach to unsupervised brain tumor segmentation by designing image-based prompts that allow indication of brain tumors.
Instead of directly training a model for brain tumor segmentation with a large amount of annotated data, we seek to train a model that can answer the question: is a voxel in the input image associated with tumor-like hyper-/hypo-intensity?
Since the hand-crafted designs may be too simplistic to represent all kinds of real tumors, the trained model may overfit the simplistic hand-crafted task rather than actually answer the question of abnormality.
arXiv Detail & Related papers (2023-04-04T02:28:25Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Modality-Pairing Learning for Brain Tumor Segmentation [34.58078431696929]
We propose a novel end-to-end Modality-Pairing learning method for brain tumor segmentation.
Our method is tested on the BraTS 2020 online testing dataset, obtaining promising segmentation performance.
arXiv Detail & Related papers (2020-10-19T07:42:10Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.