Brain Tumor Segmentation from MRI Images using Deep Learning Techniques
- URL: http://arxiv.org/abs/2305.00257v1
- Date: Sat, 29 Apr 2023 13:33:21 GMT
- Title: Brain Tumor Segmentation from MRI Images using Deep Learning Techniques
- Authors: Ayan Gupta, Mayank Dixit, Vipul Kumar Mishra, Attulya Singh, Atul
Dayal
- Abstract summary: A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
- Score: 3.1498833540989413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A brain tumor, whether benign or malignant, can potentially be life
threatening and requires painstaking efforts in order to identify the type,
origin and location, let alone cure one. Manual segmentation by medical
specialists can be time-consuming, which calls out for the involvement of
technology to hasten the process with high accuracy. For the purpose of medical
image segmentation, we inspected and identified the capable deep learning
model, which shows consistent results in the dataset used for brain tumor
segmentation. In this study, a public MRI imaging dataset contains 3064
TI-weighted images from 233 patients with three variants of brain tumor, viz.
meningioma, glioma, and pituitary tumor. The dataset files were converted and
preprocessed before indulging into the methodology which employs implementation
and training of some well-known image segmentation deep learning models like
U-Net & Attention U-Net with various backbones, Deep Residual U-Net, ResUnet++
and Recurrent Residual U-Net. with varying parameters, acquired from our review
of the literature related to human brain tumor classification and segmentation.
The experimental findings showed that among all the applied approaches, the
recurrent residual U-Net which uses Adam optimizer reaches a Mean Intersection
Over Union of 0.8665 and outperforms other compared state-of-the-art deep
learning models. The visual findings also show the remarkable results of the
brain tumor segmentation from MRI scans and demonstrates how useful the
algorithm will be for physicians to extract the brain cancers automatically
from MRI scans and serve humanity.
Related papers
- Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - A Deep Learning Approach for Brain Tumor Classification and Segmentation
Using a Multiscale Convolutional Neural Network [0.0]
We present a fully automatic brain tumor segmentation and classification model using a Deep Convolutional Neural Network.
Our method remarkably obtained a tumor classification accuracy of 0.973, higher than the other approaches using the same database.
arXiv Detail & Related papers (2024-02-04T17:47:03Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
We introduce an ensemble method that comprises eleven unique variations based on three core architectures.
Our findings reveal that the ensemble approach, combining different architectures, outperforms single models.
These results underline the potential of tailored deep learning techniques in precisely segmenting brain tumors.
arXiv Detail & Related papers (2023-08-14T15:34:22Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
This study introduces a novel ensemble approach using ONet and modified versions of UNet.
Data augmentation ensures robustness and accuracy across different scanning protocols.
Results indicate that this advanced ensemble approach offers promising prospects for enhanced diagnostic accuracy.
arXiv Detail & Related papers (2023-08-14T15:29:32Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Deep Learning models for benign and malign Ocular Tumor Growth
Estimation [3.1558405181807574]
Clinicians often face issues in selecting suitable image processing algorithm for medical imaging data.
A strategy for the selection of a proper model is presented here.
arXiv Detail & Related papers (2021-07-09T05:40:25Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.