論文の概要: Learning Markerless Robot-Depth Camera Calibration and End-Effector Pose
Estimation
- arxiv url: http://arxiv.org/abs/2212.07567v1
- Date: Thu, 15 Dec 2022 00:53:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 17:35:28.625892
- Title: Learning Markerless Robot-Depth Camera Calibration and End-Effector Pose
Estimation
- Title(参考訳): マーカーのないロボット深度カメラの校正とエンドエフェクタポース推定
- Authors: Bugra C. Sefercik, Baris Akgun
- Abstract要約: 本研究では,ディープカメラを用いた学習型マーカーレス外部キャリブレーションシステムを提案する。
自動生成された実世界のデータから,エンドエフェクタ(EE)セグメンテーション,単一フレーム回転予測,キーポイント検出のモデルを学習する。
複数のカメラのポーズからのトレーニングデータと、未確認のポーズからのテストデータによるロバスト性は、センチメートル以下の評価と、デシラディアン以下の平均キャリブレーションを与え、推定誤差を与えます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional approaches to extrinsic calibration use fiducial markers and
learning-based approaches rely heavily on simulation data. In this work, we
present a learning-based markerless extrinsic calibration system that uses a
depth camera and does not rely on simulation data. We learn models for
end-effector (EE) segmentation, single-frame rotation prediction and keypoint
detection, from automatically generated real-world data. We use a
transformation trick to get EE pose estimates from rotation predictions and a
matching algorithm to get EE pose estimates from keypoint predictions. We
further utilize the iterative closest point algorithm, multiple-frames,
filtering and outlier detection to increase calibration robustness. Our
evaluations with training data from multiple camera poses and test data from
previously unseen poses give sub-centimeter and sub-deciradian average
calibration and pose estimation errors. We also show that a carefully selected
single training pose gives comparable results.
- Abstract(参考訳): 外部校正への伝統的なアプローチでは、fiducial markers と learning-based approach がシミュレーションデータに大きく依存している。
本研究では,深度カメラを使用し,シミュレーションデータに依存しない学習型マーカーレス極端校正システムを提案する。
自動生成された実世界のデータから,エンドエフェクタ(EE)セグメンテーション,単一フレーム回転予測,キーポイント検出のモデルを学ぶ。
我々は、EEを回転予測から推定する変換手法と、EEをキーポイント予測から推定するマッチングアルゴリズムを用いています。
さらに, 逐次最接近点アルゴリズム, 多重フレーム, フィルタリングおよび異常検出により, キャリブレーションのロバスト性が向上する。
複数のカメラポーズからのトレーニングデータと、未発見のポーズによるテストデータによる評価は、サブセンチメートル、サブデシラディアン平均キャリブレーションとポーズ推定誤差を与える。
また、慎重に選択された単一のトレーニングのポーズが、同等の結果をもたらすことも示しています。
関連論文リスト
- CameraHMR: Aligning People with Perspective [54.05758012879385]
モノクロ画像からの正確な3次元ポーズと形状推定の課題に対処する。
既存のトレーニングデータセットには、擬似基底真理(pGT)を持つ実画像が含まれている。
pGTの精度を向上させる2つの貢献をしている。
論文 参考訳(メタデータ) (2024-11-12T19:12:12Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
本研究では、6次元のポーズとサイズ推定を分離し、不完全なスケールが剛性変換に与える影響を緩和するパイプラインを提案する。
具体的には,事前学習した単分子推定器を用いて局所的な幾何学的情報を抽出する。
別個のブランチは、カテゴリレベルの統計に基づいてオブジェクトのメートル法スケールを直接復元するように設計されている。
論文 参考訳(メタデータ) (2023-09-19T02:20:26Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - Single image calibration using knowledge distillation approaches [1.7205106391379026]
カメラパラメータを自動的に推定するCNNアーキテクチャを構築した。
我々は、新しいデータ配信のためのネットワークを更新する際に、知識を保存するために4つの一般的な漸進学習戦略を適用した。
実験結果は, カメラキャリブレーションのキャリブレーション推定において, いずれの手法が優れているかが示唆された。
論文 参考訳(メタデータ) (2022-12-05T15:59:35Z) - Self-Supervised Camera Self-Calibration from Video [34.35533943247917]
汎用カメラモデルの効率的なファミリーを用いてシーケンスごとのキャリブレーションパラメータを回帰する学習アルゴリズムを提案する。
提案手法は,サブピクセル再投射誤差による自己校正を行い,他の学習手法よりも優れる。
論文 参考訳(メタデータ) (2021-12-06T19:42:05Z) - Learning Eye-in-Hand Camera Calibration from a Single Image [7.262048441360133]
アイ・イン・ハンドカメラのキャリブレーションはロボティクスの基本的かつ長期にわたる問題である。
本稿では,1枚のRGB画像から,この問題をオンラインに解決するための学習的手法について検討する。
論文 参考訳(メタデータ) (2021-11-01T20:17:31Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) は、2D-3D特徴座標の3Dモデルに関して、高速で正確で堅牢なカメラローカライゼーションを目指している。
論文 参考訳(メタデータ) (2021-07-08T15:19:36Z) - Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for
Unsupervised Person Re-Identification [60.36551512902312]
unsupervised person re-identification (re-ID) は、ラベルのないデータで識別モデルを学ぶことを目的としている。
一般的な方法としては、クラスタ化によって擬似ラベルを取得し、モデルを最適化するために使用する方法がある。
本稿では,両問題を解決するための統一フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-08T09:13:06Z) - IMU-Assisted Learning of Single-View Rolling Shutter Correction [16.242924916178282]
ローリングシャッター歪みは、写真やコンピュータビジョンアルゴリズムにとって非常に望ましくない。
回転シャッター補正のための1つの画像から深度と行ワイドポーズを予測するディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-11-05T21:33:25Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - PrimA6D: Rotational Primitive Reconstruction for Enhanced and Robust 6D
Pose Estimation [11.873744190924599]
本稿では,1つの画像を入力として,回転プリミティブに基づく6次元オブジェクトポーズ推定を提案する。
変分オートエンコーダ(VAE)を利用して、基礎となるプリミティブとその関連するキーポイントを学習する。
公開データセットに対して評価すると,LINEMOD,Occlusion LINEMOD,およびY誘発データセットよりも顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-06-14T03:55:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。