論文の概要: Residual Policy Learning for Powertrain Control
- arxiv url: http://arxiv.org/abs/2212.07611v1
- Date: Thu, 15 Dec 2022 04:22:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 16:24:30.511939
- Title: Residual Policy Learning for Powertrain Control
- Title(参考訳): パワートレイン制御のための残留ポリシー学習
- Authors: Lindsey Kerbel, Beshah Ayalew, Andrej Ivanco, Keith Loiselle
- Abstract要約: 本稿では、リザーブポリシー学習(RPL)エージェントを使用して、デフォルトのパワートレインコントローラにリザーブアクションを提供するアクティブドライバ支援手法の概要を述べる。
各種の自動車追従シナリオにおける模擬商用車両の実装により,RPLエージェントは,ベースラインのソースポリシーと比較して急速に改善されたポリシーを学習することがわかった。
- 参考スコア(独自算出の注目度): 2.064612766965483
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Eco-driving strategies have been shown to provide significant reductions in
fuel consumption. This paper outlines an active driver assistance approach that
uses a residual policy learning (RPL) agent trained to provide residual actions
to default power train controllers while balancing fuel consumption against
other driver-accommodation objectives. Using previous experiences, our RPL
agent learns improved traction torque and gear shifting residual policies to
adapt the operation of the powertrain to variations and uncertainties in the
environment. For comparison, we consider a traditional reinforcement learning
(RL) agent trained from scratch. Both agents employ the off-policy Maximum A
Posteriori Policy Optimization algorithm with an actor-critic architecture. By
implementing on a simulated commercial vehicle in various car-following
scenarios, we find that the RPL agent quickly learns significantly improved
policies compared to a baseline source policy but in some measures not as good
as those eventually possible with the RL agent trained from scratch.
- Abstract(参考訳): エコ運転戦略は、燃料消費を大幅に削減することが示されている。
本稿では,既定のパワートレイン制御器に残留動作を提供するように訓練された残留ポリシー学習(rpl)エージェントを用いたアクティブドライバ支援手法について概説する。
これまでの経験から,RPLエージェントはトラクショントルクの改善と,パワートレインの動作を環境の変動や不確実性に適応させるための残留ポリシーのシフトを学習した。
比較のために,従来の強化学習(RL)エージェントをスクラッチから訓練した。
どちらのエージェントも、アクタ-クリティックアーキテクチャを備えた後方政策最適化アルゴリズムをオフ・ポリシーに採用している。
各種の車両追従シナリオにおける模擬商用車両の実装により, RPLエージェントは, ベースラインのソースポリシーよりも大幅に改善されたポリシーを迅速に学習するが, 最終的にRLエージェントがスクラッチから訓練できるものほど良くない方法もある。
関連論文リスト
- Shared learning of powertrain control policies for vehicle fleets [3.9325957466009203]
深部強化学習(DRL)は、燃料経済やその他のパフォーマンス指標を最適化するパワートレイン制御ポリシーを現場で学習することを目的としている。
本稿では, 蒸留グループ政策を用いて, 車両群間で共有学習を行うための新しい枠組みを提案する。
ベースラインに比べて燃料経済は平均8.5%改善している。
論文 参考訳(メタデータ) (2024-04-27T13:01:05Z) - Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
本稿では,ソーシャルカーの多種多様な運転方針を一つのメタ政治として訓練する効率的な方法を提案する。
ソーシャルカーのインタラクションに基づく報酬関数をランダム化することにより、多様な目的を生み出し、メタ政治を効率的に訓練することができる。
本研究では,社会自動車が学習メタ政治によって制御される環境を利用して,エゴ自動車の運転方針の堅牢性を高めるためのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-07-19T17:42:36Z) - Safe Reinforcement Learning for an Energy-Efficient Driver Assistance
System [1.8899300124593645]
強化学習(Reinforcement Learning, RL)に基づく運転支援システムは, 電力系統制御動作の継続的な改善を通じて, 燃費の向上を図る。
本稿では,RLに基づく運転支援システムによって提案される安全でない動作をフィルタするために,指数制御障壁関数(ECBF)を導出して利用する。
提案手法は, 走行中の衝突を効果的に回避できることを示すため, 車両内での安全RLスキームの訓練と評価を行う。
論文 参考訳(メタデータ) (2023-01-03T00:25:00Z) - Driver Assistance Eco-driving and Transmission Control with Deep
Reinforcement Learning [2.064612766965483]
本稿では, モデルフリー深部強化学習(RL)制御エージェントを提案する。
燃料消費を他の運転者の収容目標と交換し、最適な牽引トルクと伝達シフトポリシーを経験から学習する。
燃料効率テーブルの知識を十分に備えたベースラインコントローラと比較して, 燃料消費量の最小化に優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-15T02:52:07Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - Learning from Simulation, Racing in Reality [126.56346065780895]
ミニチュアレースカープラットフォーム上で自律的なレースを行うための強化学習ベースのソリューションを提案する。
シミュレーションで純粋に訓練されたポリシーは、実際のロボットのセットアップにうまく移行できることを示す。
論文 参考訳(メタデータ) (2020-11-26T14:58:49Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
本稿では,高速道路における連続水平決定問題に対処するために,深部強化学習(DRL)手法を用いる。
エゴ自動車両の走行目標は、衝突することなく効率的でスムーズなポリシーを実行することである。
PPO-DRLに基づく意思決定戦略は、最適性、学習効率、適応性など、複数の観点から推定される。
論文 参考訳(メタデータ) (2020-08-26T22:49:27Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z) - Transfer Deep Reinforcement Learning-enabled Energy Management Strategy
for Hybrid Tracked Vehicle [8.327437591702163]
本稿では、深部強化学習(DRL)と伝達学習(TL)を組み合わせたハイブリッド電気自動車の適応エネルギー管理戦略を提案する。
退屈なトレーニング時間でDRLの欠陥に対処することを目的としている。
DRLおよびTL対応制御ポリシは、エネルギー効率を向上し、システム性能を向上させることができる。
論文 参考訳(メタデータ) (2020-07-16T23:39:34Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z) - Efficient Deep Reinforcement Learning via Adaptive Policy Transfer [50.51637231309424]
強化学習(RL)を促進するための政策伝達フレームワーク(PTF)の提案
我々のフレームワークは、いつ、いつ、どのソースポリシーがターゲットポリシーの再利用に最適なのか、いつそれを終了するかを学習する。
実験結果から,学習過程を著しく加速し,最先端の政策伝達手法を超越していることが判明した。
論文 参考訳(メタデータ) (2020-02-19T07:30:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。