Population Template-Based Brain Graph Augmentation for Improving
One-Shot Learning Classification
- URL: http://arxiv.org/abs/2212.07790v1
- Date: Wed, 14 Dec 2022 14:56:00 GMT
- Title: Population Template-Based Brain Graph Augmentation for Improving
One-Shot Learning Classification
- Authors: Oben \"Ozg\"ur, Arwa Rekik, Islem Rekik
- Abstract summary: One-shot learning is one of the most challenging and trending concepts of deep learning.
We benchmarked our proposed solution on AD/LMCI dataset consisting of brain connectomes with Alzheimer's Disease.
Our results on classification not only provided better accuracy when augmented data generated from one sample is introduced, but yields more balanced results on other metrics as well.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The challenges of collecting medical data on neurological disorder diagnosis
problems paved the way for learning methods with scarce number of samples. Due
to this reason, one-shot learning still remains one of the most challenging and
trending concepts of deep learning as it proposes to simulate the human-like
learning approach in classification problems. Previous studies have focused on
generating more accurate fingerprints of the population using graph neural
networks (GNNs) with connectomic brain graph data. Thereby, generated
population fingerprints named connectional brain template (CBTs) enabled
detecting discriminative bio-markers of the population on classification tasks.
However, the reverse problem of data augmentation from single graph data
representing brain connectivity has never been tackled before. In this paper,
we propose an augmentation pipeline in order to provide improved metrics on our
binary classification problem. Divergently from the previous studies, we
examine augmentation from a single population template by utilizing graph-based
generative adversarial network (gGAN) architecture for a classification
problem. We benchmarked our proposed solution on AD/LMCI dataset consisting of
brain connectomes with Alzheimer's Disease (AD) and Late Mild Cognitive
Impairment (LMCI). In order to evaluate our model's generalizability, we used
cross-validation strategy and randomly sampled the folds multiple times. Our
results on classification not only provided better accuracy when augmented data
generated from one sample is introduced, but yields more balanced results on
other metrics as well.
Related papers
- Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Investigating the Predictive Reproducibility of Federated Graph Neural
Networks using Medical Datasets [0.0]
We present the first work investigating the application of federated GNN models with application to classifying medical imaging and brain connectivity datasets.
We showed that federated learning boosts both the accuracy and accuracy of GNN models in such medical learning tasks.
arXiv Detail & Related papers (2022-09-13T14:32:03Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - One Representative-Shot Learning Using a Population-Driven Template with
Application to Brain Connectivity Classification and Evolution Prediction [0.0]
Graph neural networks (GNNs) have been introduced to the field of network neuroscience.
We take a very different approach in training GNNs, where we aim to learn with one sample and achieve the best performance.
We present the first one-shot paradigm where a GNN is trained on a single population-driven template.
arXiv Detail & Related papers (2021-10-06T08:36:00Z) - ICAM-reg: Interpretable Classification and Regression with Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans [3.589107822343127]
We take advantage of recent developments in generative deep learning to develop a method for simultaneous classification, or regression, and feature attribution.
We validate our method on the tasks of Mini-Mental State Examination (MMSE) cognitive test score prediction for the Alzheimer's Disease Neuroimaging Initiative cohort.
We show that the generated FA maps can be used to explain outlier predictions and demonstrate that the inclusion of a regression module improves the disentanglement of the latent space.
arXiv Detail & Related papers (2021-03-03T17:55:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Foreseeing Brain Graph Evolution Over Time Using Deep Adversarial
Network Normalizer [0.0]
We propose the first graph-based Generative Adversarial Network (gGAN) that learns how to normalize brain graphs.
Our proposed method achieved the lowest brain disease evolution prediction error using a single baseline timepoint.
arXiv Detail & Related papers (2020-09-23T14:25:40Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.