Classification of developmental and brain disorders via graph
convolutional aggregation
- URL: http://arxiv.org/abs/2311.07370v2
- Date: Thu, 16 Nov 2023 14:55:15 GMT
- Title: Classification of developmental and brain disorders via graph
convolutional aggregation
- Authors: Ibrahim Salim and A. Ben Hamza
- Abstract summary: We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
- Score: 6.6356049194991815
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While graph convolution based methods have become the de-facto standard for
graph representation learning, their applications to disease prediction tasks
remain quite limited, particularly in the classification of neurodevelopmental
and neurodegenerative brain disorders. In this paper, we introduce an
aggregator normalization graph convolutional network by leveraging aggregation
in graph sampling, as well as skip connections and identity mapping. The
proposed model learns discriminative graph node representations by
incorporating both imaging and non-imaging features into the graph nodes and
edges, respectively, with the aim of augmenting predictive capabilities and
providing a holistic perspective on the underlying mechanisms of brain
disorders. Skip connections enable the direct flow of information from the
input features to later layers of the network, while identity mapping helps
maintain the structural information of the graph during feature learning. We
benchmark our model against several recent baseline methods on two large
datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease
Neuroimaging Initiative (ADNI), for the prediction of autism spectrum disorder
and Alzheimer's disease, respectively. Experimental results demonstrate the
competitive performance of our approach in comparison with recent baselines in
terms of several evaluation metrics, achieving relative improvements of 50% and
13.56% in classification accuracy over graph convolutional networks on ABIDE
and ADNI, respectively.
Related papers
- Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of
Alzheimer's Disease using EEG Data [9.601125513491835]
We propose a novel adaptive gated graph convolutional network (AGGCN) that can provide explainable predictions.
AGGCN adaptively learns graph structures by combining convolution-based node feature enhancement with a correlation-based measure of power spectral density similarity.
arXiv Detail & Related papers (2023-04-12T14:13:09Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - A Comparative Study of Graph Neural Networks for Shape Classification in
Neuroimaging [17.775145204666874]
We present an overview of the current state-of-the-art in geometric deep learning for shape classification in neuroimaging.
We find that using FPFH as node features substantially improves GNN performance and generalisation to out-of-distribution data.
We then confirm these results hold for a clinically relevant task, using the classification of Alzheimer's disease.
arXiv Detail & Related papers (2022-10-29T19:03:01Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
We propose a dynamic adaptivetemporal graph convolution (DASTGCN) model to overcome the shortcomings of pre-defined static correlation-based graph structures.
The proposed approach allows end-to-end inference of dynamic connections between brain regions via layer-wise graph structure learning module.
We evaluate our pipeline on the UKBiobank for age and gender classification tasks from resting-state functional scans.
arXiv Detail & Related papers (2021-09-26T07:19:47Z) - GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent
Inference [41.348451615460796]
We propose a novel semi-supervised approach named GKD based on knowledge distillation.
We perform experiments on two public datasets for diagnosing Autism spectrum disorder, and Alzheimer's disease.
According to these experiments, GKD outperforms the previous graph-based deep learning methods in terms of accuracy, AUC, and Macro F1.
arXiv Detail & Related papers (2021-04-08T08:23:37Z) - Edge-variational Graph Convolutional Networks for Uncertainty-aware
Disease Prediction [7.6146285961466]
We propose a generalizable framework that can automatically integrate imaging data with non-imaging data in populations for uncertainty-aware disease prediction.
Experimental results on four databases show that our method can consistently and significantly improve the diagnostic accuracy for Autism spectrum disorder, Alzheimer's disease, and ocular diseases.
arXiv Detail & Related papers (2020-09-06T15:53:17Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.