Learning to repeatedly solve routing problems
- URL: http://arxiv.org/abs/2212.08101v1
- Date: Thu, 15 Dec 2022 19:33:54 GMT
- Title: Learning to repeatedly solve routing problems
- Authors: Mouad Morabit, Guy Desaulniers, Andrea Lodi
- Abstract summary: We present a learned for the reoptimization of a problem after a minor change in its data.
Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution.
This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution.
- Score: 5.08128537391027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the last years, there has been a great interest in machine-learning-based
heuristics for solving NP-hard combinatorial optimization problems. The
developed methods have shown potential on many optimization problems. In this
paper, we present a learned heuristic for the reoptimization of a problem after
a minor change in its data. We focus on the case of the capacited vehicle
routing problem with static clients (i.e., same client locations) and changed
demands. Given the edges of an original solution, the goal is to predict and
fix the ones that have a high chance of remaining in an optimal solution after
a change of client demands. This partial prediction of the solution reduces the
complexity of the problem and speeds up its resolution, while yielding a good
quality solution. The proposed approach resulted in solutions with an
optimality gap ranging from 0\% to 1.7\% on different benchmark instances
within a reasonable computing time.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Self-Supervised Learning of Iterative Solvers for Constrained Optimization [0.0]
We propose a learning-based iterative solver for constrained optimization.
It can obtain very fast and accurate solutions by customizing the solver to a specific parametric optimization problem.
A novel loss function based on the Karush-Kuhn-Tucker conditions of optimality is introduced, enabling fully self-supervised training of both neural networks.
arXiv Detail & Related papers (2024-09-12T14:17:23Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making [0.0]
We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems.
We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to instances problems.
arXiv Detail & Related papers (2023-11-12T21:54:53Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Learning Adaptive Evolutionary Computation for Solving Multi-Objective
Optimization Problems [3.3266268089678257]
This paper proposes a framework that integrates MOEAs with adaptive parameter control using Deep Reinforcement Learning (DRL)
The DRL policy is trained to adaptively set the values that dictate the intensity and probability of mutation for solutions during optimization.
We show the learned policy is transferable, i.e., the policy trained on a simple benchmark problem can be directly applied to solve the complex warehouse optimization problem.
arXiv Detail & Related papers (2022-11-01T22:08:34Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Fast Re-Optimization of LeadingOnes with Frequent Changes [0.9281671380673306]
We show that the re-optimization approach suggested by Doerr et al. reaches a limit when the problem instances are prone to more frequent changes.
We propose a modification of their algorithm which interpolates between greedy search around the previous-best and the current-best solution.
arXiv Detail & Related papers (2022-09-09T16:51:41Z) - Contrastive Losses and Solution Caching for Predict-and-Optimize [19.31153168397003]
We use a Noise Contrastive approach to motivate a family of surrogate loss functions.
We address a major bottleneck of all predict-and-optimize approaches.
We show that even a very slow growth rate is enough to match the quality of state-of-the-art methods.
arXiv Detail & Related papers (2020-11-10T19:09:12Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.