Dataflow Analysis-Inspired Deep Learning for Efficient Vulnerability
Detection
- URL: http://arxiv.org/abs/2212.08108v3
- Date: Sun, 1 Oct 2023 20:48:26 GMT
- Title: Dataflow Analysis-Inspired Deep Learning for Efficient Vulnerability
Detection
- Authors: Benjamin Steenhoek, Hongyang Gao, and Wei Le
- Abstract summary: DeepDFA is a dataflow analysis-inspired graph learning framework.
It was trained in 9 minutes, 75x faster than the highest-performing baseline model.
It detected 8.7 out of 17 vulnerabilities on average across folds and was able to distinguish between patched and buggy versions.
- Score: 17.761541379830373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based vulnerability detection has shown great performance and,
in some studies, outperformed static analysis tools. However, the
highest-performing approaches use token-based transformer models, which are not
the most efficient to capture code semantics required for vulnerability
detection. Classical program analysis techniques such as dataflow analysis can
detect many types of bugs based on their root causes. In this paper, we propose
to combine such causal-based vulnerability detection algorithms with deep
learning, aiming to achieve more efficient and effective vulnerability
detection. Specifically, we designed DeepDFA, a dataflow analysis-inspired
graph learning framework and an embedding technique that enables graph learning
to simulate dataflow computation. We show that DeepDFA is both performant and
efficient. DeepDFA outperformed all non-transformer baselines. It was trained
in 9 minutes, 75x faster than the highest-performing baseline model. When using
only 50+ vulnerable and several hundreds of total examples as training data,
the model retained the same performance as 100% of the dataset. DeepDFA also
generalized to real-world vulnerabilities in DbgBench; it detected 8.7 out of
17 vulnerabilities on average across folds and was able to distinguish between
patched and buggy versions, while the highest-performing baseline models did
not detect any vulnerabilities. By combining DeepDFA with a large language
model, we surpassed the state-of-the-art vulnerability detection performance on
the Big-Vul dataset with 96.46 F1 score, 97.82 precision, and 95.14 recall. Our
replication package is located at https://doi.org/10.6084/m9.figshare.21225413 .
Related papers
- DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
We propose a data flow embedding technique to enhance the performance of pre-trained models in vulnerability detection tasks.
Specifically, we parse data flow graphs from function-level source code, and use the data type of the variable as the node characteristics of the DFG.
Our research shows that DFEPT can provide effective vulnerability semantic information to pre-trained models, achieving an accuracy of 64.97% on the Devign dataset and an F1-Score of 47.9% on the Reveal dataset.
arXiv Detail & Related papers (2024-10-24T07:05:07Z) - Revisiting the Performance of Deep Learning-Based Vulnerability Detection on Realistic Datasets [4.385369356819613]
This paper introduces Real-Vul, a dataset representing real-world scenarios for evaluating vulnerability detection models.
evaluating DeepWukong, LineVul, ReVeal, and IVDetect shows a significant drop in performance, with precision decreasing by up to 95 percentage points and F1 scores by up to 91 points.
Overfitting is identified as a key issue, and an augmentation technique is proposed, potentially improving performance by up to 30%.
arXiv Detail & Related papers (2024-07-03T13:34:30Z) - Vulnerability Detection with Code Language Models: How Far Are We? [40.455600722638906]
PrimeVul is a new dataset for training and evaluating code LMs for vulnerability detection.
It incorporates a novel set of data labeling techniques that achieve comparable label accuracy to human-verified benchmarks.
It also implements a rigorous data de-duplication and chronological data splitting strategy to mitigate data leakage issues.
arXiv Detail & Related papers (2024-03-27T14:34:29Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Can An Old Fashioned Feature Extraction and A Light-weight Model Improve
Vulnerability Type Identification Performance? [6.423483122892239]
We investigate the problem of vulnerability type identification (VTI)
We evaluate the performance of the well-known and advanced pre-trained models for VTI on a large set of vulnerabilities.
We introduce a lightweight independent component to refine the predictions of the baseline approach.
arXiv Detail & Related papers (2023-06-26T14:28:51Z) - Black-box Dataset Ownership Verification via Backdoor Watermarking [67.69308278379957]
We formulate the protection of released datasets as verifying whether they are adopted for training a (suspicious) third-party model.
We propose to embed external patterns via backdoor watermarking for the ownership verification to protect them.
Specifically, we exploit poison-only backdoor attacks ($e.g.$, BadNets) for dataset watermarking and design a hypothesis-test-guided method for dataset verification.
arXiv Detail & Related papers (2022-08-04T05:32:20Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.