Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks
- URL: http://arxiv.org/abs/2212.08121v1
- Date: Thu, 15 Dec 2022 20:20:18 GMT
- Title: Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks
- Authors: Khondoker Murad Hossain, Tim Oates
- Abstract summary: We introduce a novel method for backdoor detection that extracts features from pre-trained DNN's weights.
In comparison to other detection techniques, this has a number of benefits, such as not requiring any training data.
Our method outperforms the competing algorithms in terms of efficiency and is more accurate, helping to ensure the safe application of deep learning and AI.
- Score: 6.44397009982949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing importance of both deep neural networks (DNNs) and cloud
services for training them means that bad actors have more incentive and
opportunity to insert backdoors to alter the behavior of trained models. In
this paper, we introduce a novel method for backdoor detection that extracts
features from pre-trained DNN's weights using independent vector analysis (IVA)
followed by a machine learning classifier. In comparison to other detection
techniques, this has a number of benefits, such as not requiring any training
data, being applicable across domains, operating with a wide range of network
architectures, not assuming the nature of the triggers used to change network
behavior, and being highly scalable. We discuss the detection pipeline, and
then demonstrate the results on two computer vision datasets regarding image
classification and object detection. Our method outperforms the competing
algorithms in terms of efficiency and is more accurate, helping to ensure the
safe application of deep learning and AI.
Related papers
- Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
backdoors can be exploited by malicious actors on deep neural networks (DNNs) and cloud services for data processing.
Our approach leverages advanced tensor decomposition algorithms to meticulously analyze the weights of pre-trained DNNs and distinguish between backdoored and clean models.
This advancement enhances the security of deep learning and AI in networked systems, providing essential cybersecurity against evolving threats in emerging technologies.
arXiv Detail & Related papers (2024-03-13T03:10:11Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - TEN-GUARD: Tensor Decomposition for Backdoor Attack Detection in Deep
Neural Networks [3.489779105594534]
We introduce a novel approach to backdoor detection using two tensor decomposition methods applied to network activations.
This has a number of advantages relative to existing detection methods, including the ability to analyze multiple models at the same time.
Results show that our method detects backdoored networks more accurately and efficiently than current state-of-the-art methods.
arXiv Detail & Related papers (2024-01-06T03:08:28Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - Explaining Network Intrusion Detection System Using Explainable AI
Framework [0.5076419064097734]
Intrusion detection system is one of the important layers in cyber safety in today's world.
In this paper, we have used deep neural network for network intrusion detection.
We also proposed explainable AI framework to add transparency at every stage of machine learning pipeline.
arXiv Detail & Related papers (2021-03-12T07:15:09Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Noise-Response Analysis of Deep Neural Networks Quantifies Robustness
and Fingerprints Structural Malware [48.7072217216104]
Deep neural networks (DNNs) have structural malware' (i.e., compromised weights and activation pathways)
It is generally difficult to detect backdoors, and existing detection methods are computationally expensive and require extensive resources (e.g., access to the training data)
Here, we propose a rapid feature-generation technique that quantifies the robustness of a DNN, fingerprints' its nonlinearity, and allows us to detect backdoors (if present)
Our empirical results demonstrate that we can accurately detect backdoors with high confidence orders-of-magnitude faster than existing approaches (seconds versus
arXiv Detail & Related papers (2020-07-31T23:52:58Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
In many cases, pre-trained models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors into the models.
We propose a method to verify if a pre-trained model is Trojaned or benign.
Our method captures fingerprints of neural networks in the form of adversarial perturbations learned from the network gradients.
arXiv Detail & Related papers (2020-07-28T19:00:40Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.