Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection
- URL: http://arxiv.org/abs/2409.18642v1
- Date: Fri, 27 Sep 2024 11:20:20 GMT
- Title: Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection
- Authors: Ayush Kumar Sharma, Sourav Patel, Supriya Bharat Wakchaure, Abirami S,
- Abstract summary: We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network Intrusion Detection Systems (NIDS) are essential for protecting computer networks from malicious activities, including Denial of Service (DoS), Probing, User-to-Root (U2R), and Remote-to-Local (R2L) attacks. Without effective NIDS, networks are vulnerable to significant security breaches and data loss. Machine learning techniques provide a promising approach to enhance NIDS by automating threat detection and improving accuracy. In this research, we propose an Enhanced Convolutional Neural Network (EnCNN) for NIDS and evaluate its performance using the KDDCUP'99 dataset. Our methodology includes comprehensive data preprocessing, exploratory data analysis (EDA), and feature engineering. We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble. The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches. This demonstrates the effectiveness of EnCNN in real-time network intrusion detection, offering a robust solution for identifying and mitigating security threats, and enhancing overall network resilience.
Related papers
- Extending Network Intrusion Detection with Enhanced Particle Swarm Optimization Techniques [0.0]
The present research investigates how to improve Network Intrusion Detection Systems (NIDS) by combining Machine Learning (ML) and Deep Learning (DL) techniques.
The study uses the CSE-CIC-IDS 2018 and LITNET-2020 datasets to compare ML methods (Decision Trees, Random Forest, XGBoost) and DL models (CNNs, RNNs, DNNs) against key performance metrics.
The Decision Tree model performed better across all measures after being fine-tuned with Enhanced Particle Swarm Optimization (EPSO), demonstrating the model's ability to detect network breaches effectively.
arXiv Detail & Related papers (2024-08-14T17:11:36Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
backdoors can be exploited by malicious actors on deep neural networks (DNNs) and cloud services for data processing.
Our approach leverages advanced tensor decomposition algorithms to meticulously analyze the weights of pre-trained DNNs and distinguish between backdoored and clean models.
This advancement enhances the security of deep learning and AI in networked systems, providing essential cybersecurity against evolving threats in emerging technologies.
arXiv Detail & Related papers (2024-03-13T03:10:11Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
Intrusion Detection Systems (IDS) play a critical role in protecting interconnected networks by detecting malicious actors and activities.
This paper introduces a novel ML-based network intrusion detection model that uses Random Oversampling (RO) to address data imbalance and Stacking Feature Embedding (PCA) for dimension reduction.
Using the CIC-IDS 2017 dataset, DT, RF, and ET models reach 99.99% accuracy, while DT and RF models obtain 99.94% accuracy on CIC-IDS 2018 dataset.
arXiv Detail & Related papers (2024-01-22T05:49:41Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
We introduce a novel method for backdoor detection that extracts features from pre-trained DNN's weights.
In comparison to other detection techniques, this has a number of benefits, such as not requiring any training data.
Our method outperforms the competing algorithms in terms of efficiency and is more accurate, helping to ensure the safe application of deep learning and AI.
arXiv Detail & Related papers (2022-12-15T20:20:18Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
We present an approach that targets the security of collaborative deep inference via re-thinking the distribution strategy.
We formulate this methodology, as an optimization, where we establish a trade-off between the latency of co-inference and the privacy-level of data.
arXiv Detail & Related papers (2022-08-27T14:50:00Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.