Huruf: An Application for Arabic Handwritten Character Recognition Using
Deep Learning
- URL: http://arxiv.org/abs/2212.08610v1
- Date: Fri, 16 Dec 2022 17:39:32 GMT
- Title: Huruf: An Application for Arabic Handwritten Character Recognition Using
Deep Learning
- Authors: Minhaz Kamal, Fairuz Shaiara, Chowdhury Mohammad Abdullah, Sabbir
Ahmed, Tasnim Ahmed, and Md. Hasanul Kabir
- Abstract summary: We propose a lightweight Convolutional Neural Network-based architecture for recognizing Arabic characters and digits.
The proposed pipeline consists of a total of 18 layers containing four layers each for convolution, pooling, batch normalization, dropout, and finally one Global average layer.
The proposed model respectively achieved an accuracy of 96.93% and 99.35% which is comparable to the state-of-the-art and makes it a suitable solution for real-life end-level applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Handwriting Recognition has been a field of great interest in the Artificial
Intelligence domain. Due to its broad use cases in real life, research has been
conducted widely on it. Prominent work has been done in this field focusing
mainly on Latin characters. However, the domain of Arabic handwritten character
recognition is still relatively unexplored. The inherent cursive nature of the
Arabic characters and variations in writing styles across individuals makes the
task even more challenging. We identified some probable reasons behind this and
proposed a lightweight Convolutional Neural Network-based architecture for
recognizing Arabic characters and digits. The proposed pipeline consists of a
total of 18 layers containing four layers each for convolution, pooling, batch
normalization, dropout, and finally one Global average pooling and a Dense
layer. Furthermore, we thoroughly investigated the different choices of
hyperparameters such as the choice of the optimizer, kernel initializer,
activation function, etc. Evaluating the proposed architecture on the publicly
available 'Arabic Handwritten Character Dataset (AHCD)' and 'Modified Arabic
handwritten digits Database (MadBase)' datasets, the proposed model
respectively achieved an accuracy of 96.93% and 99.35% which is comparable to
the state-of-the-art and makes it a suitable solution for real-life end-level
applications.
Related papers
- AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - Beyond Arabic: Software for Perso-Arabic Script Manipulation [67.31374614549237]
We provide a set of finite-state transducer (FST) components and corresponding utilities for manipulating the writing systems of languages that use the Perso-Arabic script.
The library also provides simple FST-based romanization and transliteration.
arXiv Detail & Related papers (2023-01-26T20:37:03Z) - Handwritten Arabic Character Recognition for Children Writ-ing Using
Convolutional Neural Network and Stroke Identification [0.0]
We propose a convolutional neural network (CNN) model that recognizes children handwriting with an accuracy of 91% on the Hijja dataset.
We propose a new approach using multi models instead of single model based on the number of strokes in a character.
arXiv Detail & Related papers (2022-11-03T19:48:11Z) - Graphemic Normalization of the Perso-Arabic Script [47.429213930688086]
This paper documents the challenges that Perso-Arabic presents beyond the best-documented languages.
We focus on the situation in natural language processing (NLP), which is affected by multiple, often neglected, issues.
We evaluate the effects of script normalization on eight languages from diverse language families in the Perso-Arabic script diaspora on machine translation and statistical language modeling tasks.
arXiv Detail & Related papers (2022-10-21T21:59:44Z) - Kurdish Handwritten Character Recognition using Deep Learning Techniques [26.23274417985375]
This paper attempts to design and develop a model that can recognize handwritten characters for Kurdish alphabets using deep learning techniques.
A comprehensive dataset was created for handwritten Kurdish characters, which contains more than 40 thousand images.
The tested results reported a 96% accuracy rate, and training accuracy reported a 97% accuracy rate.
arXiv Detail & Related papers (2022-10-18T16:48:28Z) - Comprehensive Benchmark Datasets for Amharic Scene Text Detection and
Recognition [56.048783994698425]
Ethiopic/Amharic script is one of the oldest African writing systems, which serves at least 23 languages in East Africa.
The Amharic writing system, Abugida, has 282 syllables, 15 punctuation marks, and 20 numerals.
We presented the first comprehensive public datasets named HUST-ART, HUST-AST, ABE, and Tana for Amharic script detection and recognition in the natural scene.
arXiv Detail & Related papers (2022-03-23T03:19:35Z) - Letter-level Online Writer Identification [86.13203975836556]
We focus on a novel problem, letter-level online writer-id, which requires only a few trajectories of written letters as identification cues.
A main challenge is that a person often writes a letter in different styles from time to time.
We refer to this problem as the variance of online writing styles (Var-O-Styles)
arXiv Detail & Related papers (2021-12-06T07:21:53Z) - Arabic Handwritten Character Recognition based on Convolution Neural
Networks and Support Vector Machine [0.0]
We present an algorithm for recognizing Arabic letters and characters based on using deep convolution neural networks (DCNN) and support vector machine (SVM)
This paper addresses the problem of recognizing the Arabic handwritten characters by determining the similarity between the input templates and the pre-stored templates.
The experimental results of this work indicate the ability of the proposed algorithm to recognize, identify, and verify the input handwritten Arabic characters.
arXiv Detail & Related papers (2020-09-28T16:18:52Z) - A Hybrid Deep Learning Model for Arabic Text Recognition [2.064612766965483]
This paper presents a model that can recognize Arabic text that was printed using multiple font types.
The proposed model employs a hybrid DL network that can recognize Arabic printed text without the need for character segmentation.
The model achieved good results in recognizing characters and words and it also achieved promising results in recognizing characters when it was tested on unseen data.
arXiv Detail & Related papers (2020-09-04T02:49:17Z) - Neural Computing for Online Arabic Handwriting Character Recognition
using Hard Stroke Features Mining [0.0]
An enhanced method of detecting the desired critical points from vertical and horizontal direction-length of handwriting stroke features of online Arabic script recognition is proposed.
A minimum feature set is extracted from these tokens for classification of characters using a multilayer perceptron with a back-propagation learning algorithm and modified sigmoid function-based activation function.
The proposed method achieves an average accuracy of 98.6% comparable in state of art character recognition techniques.
arXiv Detail & Related papers (2020-05-02T23:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.