AceGPT, Localizing Large Language Models in Arabic
- URL: http://arxiv.org/abs/2309.12053v5
- Date: Tue, 2 Apr 2024 06:04:16 GMT
- Title: AceGPT, Localizing Large Language Models in Arabic
- Authors: Huang Huang, Fei Yu, Jianqing Zhu, Xuening Sun, Hao Cheng, Dingjie Song, Zhihong Chen, Abdulmohsen Alharthi, Bang An, Juncai He, Ziche Liu, Zhiyi Zhang, Junying Chen, Jianquan Li, Benyou Wang, Lian Zhang, Ruoyu Sun, Xiang Wan, Haizhou Li, Jinchao Xu,
- Abstract summary: The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
- Score: 73.39989503874634
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper is devoted to the development of a localized Large Language Model (LLM) specifically for Arabic, a language imbued with unique cultural characteristics inadequately addressed by current mainstream models. Significant concerns emerge when addressing cultural sensitivity and local values. To address this, the paper proposes a comprehensive solution that includes further pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic, alongside Reinforcement Learning with AI Feedback (RLAIF) employing a reward model attuned to local culture and values. The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities. Comprehensive evaluations reveal that the resulting model, dubbed `AceGPT', sets the state-of-the-art standard for open Arabic LLMs across various benchmarks. Codes, data, and models are in https://github.com/FreedomIntelligence/AceGPT.
Related papers
- Commonsense Reasoning in Arab Culture [6.116784716369165]
We introduce datasetname, a commonsense reasoning dataset in Modern Standard Arabic (MSA), covering cultures of 13 countries across the Gulf, Levant, North Africa, and the Nile Valley.
The dataset was built from scratch by engaging native speakers to write and validate culturally relevant questions for their respective countries.
datasetname spans 12 daily life domains with 54 fine-grained subtopics, reflecting various aspects of social norms, traditions, and everyday experiences.
arXiv Detail & Related papers (2025-02-18T11:49:54Z) - Second Language (Arabic) Acquisition of LLMs via Progressive Vocabulary Expansion [55.27025066199226]
This paper addresses the need for democratizing large language models (LLM) in the Arab world.
One practical objective for an Arabic LLM is to utilize an Arabic-specific vocabulary for the tokenizer that could speed up decoding.
Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion.
arXiv Detail & Related papers (2024-12-16T19:29:06Z) - A Survey of Large Language Models for Arabic Language and its Dialects [0.0]
This survey offers a comprehensive overview of Large Language Models (LLMs) designed for Arabic language and its dialects.
It covers key architectures, including encoder-only, decoder-only, and encoder-decoder models, along with the datasets used for pre-training.
The study also explores monolingual, bilingual, and multilingual LLMs, analyzing their architectures and performance across downstream tasks.
arXiv Detail & Related papers (2024-10-26T17:48:20Z) - AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs [22.121471902726892]
We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation.
First-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions.
arXiv Detail & Related papers (2024-09-17T17:59:25Z) - ALLaM: Large Language Models for Arabic and English [9.881560166505452]
We present ALLaM: Arabic Large Language Model, a series of large language models to support the ecosystem of Arabic Language Technologies (ALT)
Our autoregressive decoder-only architecture models demonstrate how second-language acquisition via vocabulary expansion and pretraining can steer a model towards a new language (Arabic) without any catastrophic forgetting in the original language (English)
We show that extensive alignment with human preferences can significantly enhance the performance of a language model compared to models of a larger scale with lower quality alignment.
arXiv Detail & Related papers (2024-07-22T05:35:17Z) - Bilingual Adaptation of Monolingual Foundation Models [48.859227944759986]
We present an efficient method for adapting a monolingual Large Language Model (LLM) to another language.
Our two-stage approach begins with expanding the vocabulary and training only the embeddings matrix.
By continually pre-training on a mix of Arabic and English corpora, the model retains its proficiency in English while acquiring capabilities in Arabic.
arXiv Detail & Related papers (2024-07-13T21:09:38Z) - 101 Billion Arabic Words Dataset [0.0]
This study aims to address the data scarcity in the Arab world and to encourage the development of Arabic Language Models.
We undertook a large-scale data mining project, extracting a substantial volume of text from the Common Crawl WET files.
The extracted data underwent a rigorous cleaning and deduplication process, using innovative techniques to ensure the integrity and uniqueness of the dataset.
arXiv Detail & Related papers (2024-04-29T13:15:03Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - Jais and Jais-chat: Arabic-Centric Foundation and Instruction-Tuned Open
Generative Large Language Models [57.76998376458017]
We introduce Jais and Jais-chat, new state-of-the-art Arabic-centric foundation and instruction-tuned open generative large language models (LLMs)
The models are based on the GPT-3 decoder-only architecture and are pretrained on a mixture of Arabic and English texts.
We provide a detailed description of the training, the tuning, the safety alignment, and the evaluation of the models.
arXiv Detail & Related papers (2023-08-30T17:07:17Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
We propose an efficient modeling framework for cross-lingual named entity recognition in semi-structured text data.
We employ two independent datasets of SMSs in English and Arabic, each carrying semi-structured banking transaction information.
With access to only 30 labeled samples, our model can generalize the recognition of merchants, amounts, and other fields from English to Arabic.
arXiv Detail & Related papers (2023-07-16T00:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.