論文の概要: Self-Prompting Large Language Models for Zero-Shot Open-Domain QA
- arxiv url: http://arxiv.org/abs/2212.08635v2
- Date: Tue, 16 May 2023 11:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 19:18:02.919325
- Title: Self-Prompting Large Language Models for Zero-Shot Open-Domain QA
- Title(参考訳): ゼロショットオープンドメインQAのための自己プロンピング大言語モデル
- Authors: Junlong Li, Zhuosheng Zhang, Hai Zhao
- Abstract要約: Open-Domain Question Answering (ODQA) は、背景文書を明示的に提供せずにファクトイドの質問に答えることを目的としている。
ゼロショット設定では、Retriever-Readersのようなカスタマイズされたモデルをトレーニングするデータがないため、このタスクはより難しい。
本稿では,大規模言語モデルのパラメータに格納された膨大な知識を明示的に活用するセルフプロンプトフレームワークを提案する。
- 参考スコア(独自算出の注目度): 84.1784903043884
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Open-Domain Question Answering (ODQA) aims at answering factoid questions
without explicitly providing specific background documents. In a zero-shot
setting, this task is more challenging since no data is available to train
customized models like Retriever-Readers. Recently, Large Language Models
(LLMs) like GPT-3 have shown their power in zero-shot ODQA with direct
prompting methods, but these methods are still far from releasing the full
powerfulness of LLMs only in an implicitly invoking way. In this paper, we
propose a Self-Prompting framework to explicitly utilize the massive knowledge
stored in the parameters of LLMs and their strong instruction understanding
abilities. Concretely, we prompt LLMs step by step to generate multiple pseudo
QA pairs with background passages and explanations from scratch and then use
those generated elements for in-context learning. Experimental results show our
method surpasses previous SOTA methods significantly on three widely-used ODQA
datasets, and even achieves comparable performance with some Retriever-Reader
models fine-tuned on full training data.
- Abstract(参考訳): Open-Domain Question Answering (ODQA) は、特定の背景文書を明示的に提供せずにファクトイドに答えることを目的としている。
ゼロショット設定では、Retriever-Readersのようなカスタマイズされたモデルをトレーニングするデータがないため、このタスクはより難しい。
近年、gpt-3のような大規模言語モデル(llm)は、直接プロンプト方式でゼロショットodqaの能力を示しているが、これらの手法は、暗黙的に起動するだけでllmの完全な強力さをリリースするには程遠い。
本稿では,LLMのパラメータに格納されている膨大な知識と,その強力な指導理解能力を明確に活用するセルフプロンプトフレームワークを提案する。
具体的には,背景文と説明文をスクラッチから複数の擬似QAペアを生成し,その生成した要素を文脈内学習に利用する。
実験結果から,本手法は3つの広く使用されているODQAデータセットにおいて,従来のSOTA手法をはるかに上回り,Retriever-Readerモデルと同等の性能を示した。
関連論文リスト
- Extract, Define, Canonicalize: An LLM-based Framework for Knowledge Graph Construction [12.455647753787442]
抽出・デファイン・カノニケーズ(EDC)という3相フレームワークを提案する。
EDCはフレキシブルで、事前に定義されたターゲットスキーマが利用可能で、そうでない場合に適用される。
EDCがパラメータチューニングなしで高品質な三重項を抽出できることを実証する。
論文 参考訳(メタデータ) (2024-04-05T02:53:51Z) - Prompt-Time Symbolic Knowledge Capture with Large Language Models [0.0]
ユーザ固有の知識で大きな言語モデル(LLM)を拡張することは、パーソナルAIアシスタントのような現実世界のアプリケーションにとって不可欠である。
本稿では,既存のLLM機能を活用して,迅速な知識獲得を実現する。
論文 参考訳(メタデータ) (2024-02-01T08:15:28Z) - Learning to Prompt with Text Only Supervision for Vision-Language Models [107.282881515667]
メソッドの1つのブランチは、視覚情報を使用してプロンプトを学習することでCLIPに適応する。
別のアプローチでは、大規模な言語モデルからクラス記述を生成することで、トレーニング不要の手法を利用する。
そこで本研究では,テキストデータのみを用いてプロンプトを学習することで,両ストリームの強みを組み合わせることを提案する。
論文 参考訳(メタデータ) (2024-01-04T18:59:49Z) - Open-source Large Language Models are Strong Zero-shot Query Likelihood
Models for Document Ranking [36.90911173089409]
大規模言語モデル(LLM)は、効果的なクエリ類似モデル(QLM)として登場した。
本稿では,近年のLLMにおけるゼロショットランキングの有効性について検討する。
LLMをベースとしたQLMとハイブリッドゼロショットレトリバーを統合した,最先端のランキングシステムを提案する。
論文 参考訳(メタデータ) (2023-10-20T02:54:42Z) - Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge
Graph Question Answering [7.888547093390469]
大言語モデル(LLM)は、ゼロショットのクローズドブック質問応答タスクを実行することができる。
我々は,LSMの入力において,その知識を直接拡張することを提案する。
我々のフレームワークであるKAPING(Knowledge-Augmented Language Model Prompting)は、モデルトレーニングを必要としないため、完全にゼロショットである。
論文 参考訳(メタデータ) (2023-06-07T04:15:21Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
本研究では,ALIESと呼ばれる新しい手法を提案する。
入力クエリが与えられた場合、ALLIESはLLMを活用して、元のクエリに関連する新しいクエリを反復的に生成する。
元のクエリのスコープを反復的に精錬して拡張することにより、ALLIESは直接検索できない隠れた知識をキャプチャし、利用する。
論文 参考訳(メタデータ) (2023-05-24T06:16:44Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language
Models [111.42052290293965]
大規模言語モデル(LLM)は、新しい言語タスクに対して優れたゼロショット一般化を証明している。
視覚と言語データに対するエンドツーエンドのトレーニングは、切断を橋渡しするかもしれないが、柔軟性がなく、計算コストがかかる。
上述したモダリティとタスクの切断をブリッジできるプロンプトを提供するプラグイン・アンド・プレイモジュールであるemphImg2Promptを提案する。
論文 参考訳(メタデータ) (2022-12-21T08:39:36Z) - Recitation-Augmented Language Models [85.30591349383849]
知識集約型NLPタスクにおいて,RECITEは強力なパラダイムであることを示す。
具体的には、リサイクリングを中間ステップとして活用することにより、新しい最先端性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-10-04T00:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。