Efficient Conditionally Invariant Representation Learning
- URL: http://arxiv.org/abs/2212.08645v2
- Date: Tue, 19 Dec 2023 18:46:19 GMT
- Title: Efficient Conditionally Invariant Representation Learning
- Authors: Roman Pogodin, Namrata Deka, Yazhe Li, Danica J. Sutherland, Victor
Veitch, Arthur Gretton
- Abstract summary: Conditional Independence Regression CovariancE (CIRCE)
Measures of conditional feature dependence require multiple regressions for each step of feature learning.
In experiments, we show superior performance to previous methods on challenging benchmarks.
- Score: 41.320360597120604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the Conditional Independence Regression CovariancE (CIRCE), a
measure of conditional independence for multivariate continuous-valued
variables. CIRCE applies as a regularizer in settings where we wish to learn
neural features $\varphi(X)$ of data $X$ to estimate a target $Y$, while being
conditionally independent of a distractor $Z$ given $Y$. Both $Z$ and $Y$ are
assumed to be continuous-valued but relatively low dimensional, whereas $X$ and
its features may be complex and high dimensional. Relevant settings include
domain-invariant learning, fairness, and causal learning. The procedure
requires just a single ridge regression from $Y$ to kernelized features of $Z$,
which can be done in advance. It is then only necessary to enforce independence
of $\varphi(X)$ from residuals of this regression, which is possible with
attractive estimation properties and consistency guarantees. By contrast,
earlier measures of conditional feature dependence require multiple regressions
for each step of feature learning, resulting in more severe bias and variance,
and greater computational cost. When sufficiently rich features are used, we
establish that CIRCE is zero if and only if $\varphi(X) \perp \!\!\! \perp Z
\mid Y$. In experiments, we show superior performance to previous methods on
challenging benchmarks, including learning conditionally invariant image
features.
Related papers
- The Projected Covariance Measure for assumption-lean variable significance testing [3.8936058127056357]
A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero.
We study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$.
We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests.
arXiv Detail & Related papers (2022-11-03T17:55:50Z) - Horizon-Free and Variance-Dependent Reinforcement Learning for Latent
Markov Decision Processes [62.90204655228324]
We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight.
We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver.
arXiv Detail & Related papers (2022-10-20T21:32:01Z) - Blessing of Class Diversity in Pre-training [54.335530406959435]
We prove that when the classes of the pre-training task are sufficiently diverse, pre-training can significantly improve the sample efficiency of downstream tasks.
Our proof relies on a vector-form Rademacher complexity chain rule for composite function classes and a modified self-concordance condition.
arXiv Detail & Related papers (2022-09-07T20:10:12Z) - Reward-Free Model-Based Reinforcement Learning with Linear Function
Approximation [92.99933928528797]
We study the model-based reward-free reinforcement learning with linear function approximation for episodic Markov decision processes (MDPs)
In the planning phase, the agent is given a specific reward function and uses samples collected from the exploration phase to learn a good policy.
We show that to obtain an $epsilon$-optimal policy for arbitrary reward function, UCRL-RFE needs to sample at most $tilde O(H4d(H + d)epsilon-2)$ episodes.
arXiv Detail & Related papers (2021-10-12T23:03:58Z) - Mediated Uncoupled Learning: Learning Functions without Direct
Input-output Correspondences [80.95776331769899]
We consider the task of predicting $Y$ from $X$ when we have no paired data of them.
A naive approach is to predict $U$ from $X$ using $S_X$ and then $Y$ from $U$ using $S_Y$.
We propose a new method that avoids predicting $U$ but directly learns $Y = f(X)$ by training $f(X)$ with $S_X$ to predict $h(U)$.
arXiv Detail & Related papers (2021-07-16T22:13:29Z) - Learning to extrapolate using continued fractions: Predicting the
critical temperature of superconductor materials [5.905364646955811]
In the field of Artificial Intelligence (AI) and Machine Learning (ML), the approximation of unknown target functions $y=f(mathbfx)$ is a common objective.
We refer to $S$ as the training set and aim to identify a low-complexity mathematical model that can effectively approximate this target function for new instances $mathbfx$.
arXiv Detail & Related papers (2020-11-27T04:57:40Z) - Truncated Linear Regression in High Dimensions [26.41623833920794]
In truncated linear regression, $(A_i, y_i)_i$ whose dependent variable equals $y_i= A_irm T cdot x* + eta_i$ is some fixed unknown vector of interest.
The goal is to recover $x*$ under some favorable conditions on the $A_i$'s and the noise distribution.
We prove that there exists a computationally and statistically efficient method for recovering $k$-sparse $n$-dimensional vectors $x*$ from $m$ truncated samples.
arXiv Detail & Related papers (2020-07-29T00:31:34Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Statistical-Query Lower Bounds via Functional Gradients [19.5924910463796]
We show that any statistical-query algorithm with tolerance $n- (1/epsilon)b$ must use at least $2nc epsilon$ queries for some constant $b.
Our results rule out general (as opposed to correlational) SQ learning algorithms, which is unusual for real-valued learning problems.
arXiv Detail & Related papers (2020-06-29T05:15:32Z) - Does generalization performance of $l^q$ regularization learning depend
on $q$? A negative example [19.945160684285003]
$lq$-regularization has been demonstrated to be an attractive technique in machine learning and statistical modeling.
We show that all $lq$ estimators for $0 infty$ attain similar generalization error bounds.
This finding tentatively reveals that, in some modeling contexts, the choice of $q$ might not have a strong impact in terms of the generalization capability.
arXiv Detail & Related papers (2013-07-25T00:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.