Truncated Linear Regression in High Dimensions
- URL: http://arxiv.org/abs/2007.14539v1
- Date: Wed, 29 Jul 2020 00:31:34 GMT
- Title: Truncated Linear Regression in High Dimensions
- Authors: Constantinos Daskalakis, Dhruv Rohatgi, Manolis Zampetakis
- Abstract summary: In truncated linear regression, $(A_i, y_i)_i$ whose dependent variable equals $y_i= A_irm T cdot x* + eta_i$ is some fixed unknown vector of interest.
The goal is to recover $x*$ under some favorable conditions on the $A_i$'s and the noise distribution.
We prove that there exists a computationally and statistically efficient method for recovering $k$-sparse $n$-dimensional vectors $x*$ from $m$ truncated samples.
- Score: 26.41623833920794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As in standard linear regression, in truncated linear regression, we are
given access to observations $(A_i, y_i)_i$ whose dependent variable equals
$y_i= A_i^{\rm T} \cdot x^* + \eta_i$, where $x^*$ is some fixed unknown vector
of interest and $\eta_i$ is independent noise; except we are only given an
observation if its dependent variable $y_i$ lies in some "truncation set" $S
\subset \mathbb{R}$. The goal is to recover $x^*$ under some favorable
conditions on the $A_i$'s and the noise distribution. We prove that there
exists a computationally and statistically efficient method for recovering
$k$-sparse $n$-dimensional vectors $x^*$ from $m$ truncated samples, which
attains an optimal $\ell_2$ reconstruction error of $O(\sqrt{(k \log n)/m})$.
As a corollary, our guarantees imply a computationally efficient and
information-theoretically optimal algorithm for compressed sensing with
truncation, which may arise from measurement saturation effects. Our result
follows from a statistical and computational analysis of the Stochastic
Gradient Descent (SGD) algorithm for solving a natural adaptation of the LASSO
optimization problem that accommodates truncation. This generalizes the works
of both: (1) [Daskalakis et al. 2018], where no regularization is needed due to
the low-dimensionality of the data, and (2) [Wainright 2009], where the
objective function is simple due to the absence of truncation. In order to deal
with both truncation and high-dimensionality at the same time, we develop new
techniques that not only generalize the existing ones but we believe are of
independent interest.
Related papers
- Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method [10.742859956268655]
This paper aims to recover the intrinsic model parameters given the leverage scores gradient.
We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$.
arXiv Detail & Related papers (2024-08-21T01:39:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Hardness and Algorithms for Robust and Sparse Optimization [17.842787715567436]
We explore algorithms and limitations for sparse optimization problems such as sparse linear regression and robust linear regression.
Specifically, the sparse linear regression problem seeks a $k$-sparse vector $xinmathbbRd$ to minimize $|Ax-b|$.
The robust linear regression problem seeks a set $S$ that ignores at most $k$ rows and a vector $x$ to minimize $|(Ax-b)_S|$.
arXiv Detail & Related papers (2022-06-29T01:40:38Z) - Robust Testing in High-Dimensional Sparse Models [0.0]
We consider the problem of robustly testing the norm of a high-dimensional sparse signal vector under two different observation models.
We show that any algorithm that reliably tests the norm of the regression coefficient requires at least $n=Omegaleft(min(slog d,1/gamma4)right) samples.
arXiv Detail & Related papers (2022-05-16T07:47:22Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
We study active sampling algorithms for linear regression, which aim to query only a small number of entries of a target vector.
We show that this dependence on $d$ is optimal, up to logarithmic factors.
We also provide the first total sensitivity upper bound $O(dmax1,p/2log2 n)$ for loss functions with at most degree $p$ growth.
arXiv Detail & Related papers (2021-11-09T00:20:01Z) - Optimal Spectral Recovery of a Planted Vector in a Subspace [80.02218763267992]
We study efficient estimation and detection of a planted vector $v$ whose $ell_4$ norm differs from that of a Gaussian vector with the same $ell$ norm.
We show that in the regime $n rho gg sqrtN$, any spectral method from a large class (and more generally, any low-degree of the input) fails to detect the planted vector.
arXiv Detail & Related papers (2021-05-31T16:10:49Z) - Outlier-robust sparse/low-rank least-squares regression and robust
matrix completion [1.0878040851637998]
We study high-dimensional least-squares regression within a subgaussian statistical learning framework with heterogeneous noise.
We also present a novel theory of trace-regression with matrix decomposition based on a new application of the product process.
arXiv Detail & Related papers (2020-12-12T07:42:47Z) - Sparse sketches with small inversion bias [79.77110958547695]
Inversion bias arises when averaging estimates of quantities that depend on the inverse covariance.
We develop a framework for analyzing inversion bias, based on our proposed concept of an $(epsilon,delta)$-unbiased estimator for random matrices.
We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, the estimator $(epsilon,delta)$-unbiased for $(Atop A)-1$ with a sketch of size $m=O(d+sqrt d/
arXiv Detail & Related papers (2020-11-21T01:33:15Z) - Conditional Uncorrelation and Efficient Non-approximate Subset Selection
in Sparse Regression [72.84177488527398]
We consider sparse regression from the view of correlation, and propose the formula of conditional uncorrelation.
By the proposed method, the computational complexity is reduced from $O(frac16k3+mk2+mkd)$ to $O(frac16k3+frac12mk2)$ for each candidate subset in sparse regression.
arXiv Detail & Related papers (2020-09-08T20:32:26Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Online Robust Regression via SGD on the l1 loss [19.087335681007477]
We consider the robust linear regression problem in the online setting where we have access to the data in a streaming manner.
We show in this work that the descent on the $ell_O( 1 / (1 - eta)2 n )$ loss converges to the true parameter vector at a $tildeO( 1 / (1 - eta)2 n )$ rate which is independent of the values of the contaminated measurements.
arXiv Detail & Related papers (2020-07-01T11:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.