An Upper Bound for the Distribution Overlap Index and Its Applications
- URL: http://arxiv.org/abs/2212.08701v1
- Date: Fri, 16 Dec 2022 20:02:03 GMT
- Title: An Upper Bound for the Distribution Overlap Index and Its Applications
- Authors: Hao Fu, Prashanth Krishnamurthy, Siddharth Garg, Farshad Khorrami
- Abstract summary: This paper proposes an easy-to-compute upper bound for the overlap index between two probability distributions.
The proposed bound shows its value in one-class classification and domain shift analysis.
Our work shows significant promise toward broadening the applications of overlap-based metrics.
- Score: 18.481370450591317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an easy-to-compute upper bound for the overlap index
between two probability distributions without requiring any knowledge of the
distribution models. The computation of our bound is time-efficient and
memory-efficient and only requires finite samples. The proposed bound shows its
value in one-class classification and domain shift analysis. Specifically, in
one-class classification, we build a novel one-class classifier by converting
the bound into a confidence score function. Unlike most one-class classifiers,
the training process is not needed for our classifier. Additionally, the
experimental results show that our classifier \textcolor{\colorname}{can be
accurate with} only a small number of in-class samples and outperforms many
state-of-the-art methods on various datasets in different one-class
classification scenarios. In domain shift analysis, we propose a theorem based
on our bound. The theorem is useful in detecting the existence of domain shift
and inferring data information. The detection and inference processes are both
computation-efficient and memory-efficient. Our work shows significant promise
toward broadening the applications of overlap-based metrics.
Related papers
- A Generic Method for Fine-grained Category Discovery in Natural Language Texts [38.297873969795546]
We introduce a method that successfully detects fine-grained clusters of semantically similar texts guided by a novel objective function.
The method uses semantic similarities in a logarithmic space to guide sample distributions in the Euclidean space.
We also propose a centroid inference mechanism to support real-time applications.
arXiv Detail & Related papers (2024-06-18T23:27:46Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
In this paper, contextual hints are exploited via learning a context-aware classifier.
Our method is model-agnostic and can be easily applied to generic segmentation models.
With only negligible additional parameters and +2% inference time, decent performance gain has been achieved on both small and large models.
arXiv Detail & Related papers (2023-03-21T07:00:35Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Prediction Calibration for Generalized Few-shot Semantic Segmentation [101.69940565204816]
Generalized Few-shot Semantic (GFSS) aims to segment each image pixel into either base classes with abundant training examples or novel classes with only a handful of (e.g., 1-5) training images per class.
We build a cross-attention module that guides the classifier's final prediction using the fused multi-level features.
Our PCN outperforms the state-the-art alternatives by large margins.
arXiv Detail & Related papers (2022-10-15T13:30:12Z) - Realistic Evaluation of Transductive Few-Shot Learning [41.06192162435249]
Transductive inference is widely used in few-shot learning.
We study the effect of arbitrary class distributions within the query sets of few-shot tasks at inference.
We evaluate experimentally state-of-the-art transductive methods over 3 widely used data sets.
arXiv Detail & Related papers (2022-04-24T03:35:06Z) - Multiple Classifiers Based Maximum Classifier Discrepancy for
Unsupervised Domain Adaptation [25.114533037440896]
We propose to extend the structure of two classifiers to multiple classifiers to further boost its performance.
We demonstrate that, on average, adopting the structure of three classifiers normally yields the best performance as a trade-off between the accuracy and efficiency.
arXiv Detail & Related papers (2021-08-02T03:00:13Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples.
We propose a method to learn the threshold using source samples and to adapt it to the target domain.
Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target.
arXiv Detail & Related papers (2021-04-07T18:36:31Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
We study how a classifier's performance can be used to extrapolate its expected accuracy on a larger, unobserved set of classes.
We formulate a robust neural-network-based algorithm, "CleaneX", which learns to estimate the accuracy of such classifiers on arbitrarily large sets of classes.
arXiv Detail & Related papers (2020-10-28T14:37:25Z) - MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation [29.43532067090422]
We propose an easy-to-implement method dubbed MiniMax Entropy Networks (MMEN) based on adversarial learning.
Unlike most existing approaches which employ a generator to deal with domain difference, MMEN focuses on learning the categorical information from unlabeled target samples.
arXiv Detail & Related papers (2019-04-21T13:39:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.