DuNST: Dual Noisy Self Training for Semi-Supervised Controllable Text
Generation
- URL: http://arxiv.org/abs/2212.08724v3
- Date: Tue, 6 Jun 2023 04:13:03 GMT
- Title: DuNST: Dual Noisy Self Training for Semi-Supervised Controllable Text
Generation
- Authors: Yuxi Feng, Xiaoyuan Yi, Xiting Wang, Laks V.S. Lakshmanan, Xing Xie
- Abstract summary: Self-training (ST) has prospered again in language understanding by augmenting the fine-tuning of pre-trained language models when labeled data is insufficient.
It remains challenging to incorporate ST into attribute-controllable language generation.
- Score: 34.49194429157166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-training (ST) has prospered again in language understanding by
augmenting the fine-tuning of pre-trained language models when labeled data is
insufficient. However, it remains challenging to incorporate ST into
attribute-controllable language generation. Augmented by only self-generated
pseudo text, generation models over-emphasize exploitation of the previously
learned space, suffering from a constrained generalization boundary. We revisit
ST and propose a novel method, DuNST to alleviate this problem. DuNST jointly
models text generation and classification with a shared Variational AutoEncoder
and corrupts the generated pseudo text by two kinds of flexible noise to
disturb the space. In this way, our model could construct and utilize both
pseudo text from given labels and pseudo labels from available unlabeled text,
which are gradually refined during the ST process. We theoretically demonstrate
that DuNST can be regarded as enhancing exploration towards the potential real
text space, providing a guarantee of improved performance. Experiments on three
controllable generation tasks show that DuNST could significantly boost control
accuracy while maintaining comparable generation fluency and diversity against
several strong baselines.
Related papers
- Text2Data: Low-Resource Data Generation with Textual Control [104.38011760992637]
Natural language serves as a common and straightforward control signal for humans to interact seamlessly with machines.
We propose Text2Data, a novel approach that utilizes unlabeled data to understand the underlying data distribution through an unsupervised diffusion model.
It undergoes controllable finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
arXiv Detail & Related papers (2024-02-08T03:41:39Z) - KEST: Kernel Distance Based Efficient Self-Training for Improving
Controllable Text Generation [24.47531522553703]
We propose KEST, a novel and efficient self-training framework to handle these problems.
KEST utilizes a kernel-based loss, rather than standard cross entropy, to learn from the soft pseudo text produced by a shared non-autoregressive generator.
Experiments on three controllable generation tasks demonstrate that KEST significantly improves control accuracy while maintaining comparable text fluency and generation diversity against several strong baselines.
arXiv Detail & Related papers (2023-06-17T19:40:57Z) - Click: Controllable Text Generation with Sequence Likelihood Contrastive
Learning [69.35360098882606]
We introduce Click for controllable text generation, which needs no modification to the model architecture.
It employs a contrastive loss on sequence likelihood, which fundamentally decreases the generation probability of negative samples.
It also adopts a novel likelihood ranking-based strategy to construct contrastive samples from model generations.
arXiv Detail & Related papers (2023-06-06T01:56:44Z) - Tractable Control for Autoregressive Language Generation [82.79160918147852]
We propose to use tractable probabilistic models (TPMs) to impose lexical constraints in autoregressive text generation models.
We show that GeLaTo achieves state-of-the-art performance on challenging benchmarks for constrained text generation.
Our work opens up new avenues for controlling large language models and also motivates the development of more expressive TPMs.
arXiv Detail & Related papers (2023-04-15T00:19:44Z) - STA: Self-controlled Text Augmentation for Improving Text
Classifications [2.9669250132689164]
A number of text augmentation techniques have emerged in the field of Natural Language Processing (NLP)
We introduce a state-of-the-art approach for Self-Controlled Text Augmentation (STA)
Our approach tightly controls the generation process by introducing a self-checking procedure to ensure that generated examples retain the semantic content of the original text.
arXiv Detail & Related papers (2023-02-24T17:54:12Z) - FAST: Improving Controllability for Text Generation with Feedback Aware
Self-Training [25.75982440355576]
Controllable text generation systems often leverage control codes to direct various properties of the output like style and length.
Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms.
We propose two simple techniques to reduce these correlations in training sets.
arXiv Detail & Related papers (2022-10-06T19:00:51Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
We propose using optimal transport (OT) to match the sequences generated in training and testing modes.
An extension is also proposed to improve the OT learning, based on the structural and contextual information of the text sequences.
The effectiveness of the proposed method is validated on machine translation, text summarization, and text generation tasks.
arXiv Detail & Related papers (2020-10-12T19:42:25Z) - Controllable Text Generation with Focused Variation [71.07811310799664]
Focused-Variation Network (FVN) is a novel model to control language generation.
FVN learns disjoint discrete latent spaces for each attribute inside codebooks, which allows for both controllability and diversity.
We evaluate FVN on two text generation datasets with annotated content and style, and show state-of-the-art performance as assessed by automatic and human evaluations.
arXiv Detail & Related papers (2020-09-25T06:31:06Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
We present POINTER, a novel insertion-based approach for hard-constrained text generation.
The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner.
The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable.
arXiv Detail & Related papers (2020-05-01T18:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.