論文の概要: Context-dependent Explainability and Contestability for Trustworthy
Medical Artificial Intelligence: Misclassification Identification of
Morbidity Recognition Models in Preterm Infants
- arxiv url: http://arxiv.org/abs/2212.08821v1
- Date: Sat, 17 Dec 2022 07:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 15:08:22.619869
- Title: Context-dependent Explainability and Contestability for Trustworthy
Medical Artificial Intelligence: Misclassification Identification of
Morbidity Recognition Models in Preterm Infants
- Title(参考訳): 信頼できる医療人工知能の文脈依存的説明可能性と検証可能性:幼児期における形態認識モデルの誤分類
- Authors: Isil Guzey, Ozlem Ucar, Nukhet Aladag Ciftdemir, Betul Acunas
- Abstract要約: 説明可能なAI(XAI)は、エンドユーザーをサポートするAI推論を明確にすることで、この要件に対処することを目指している。
提案手法は,3つの主要な柱上に構築され,臨床コンテキストの潜時空間を利用して特徴セットを分解し,世界的説明の臨床的関連性を評価するとともに,局所的説明に基づく潜時空間類似性(LSS)を考察した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Although machine learning (ML) models of AI achieve high performances in
medicine, they are not free of errors. Empowering clinicians to identify
incorrect model recommendations is crucial for engendering trust in medical AI.
Explainable AI (XAI) aims to address this requirement by clarifying AI
reasoning to support the end users. Several studies on biomedical imaging
achieved promising results recently. Nevertheless, solutions for models using
tabular data are not sufficient to meet the requirements of clinicians yet.
This paper proposes a methodology to support clinicians in identifying failures
of ML models trained with tabular data. We built our methodology on three main
pillars: decomposing the feature set by leveraging clinical context latent
space, assessing the clinical association of global explanations, and Latent
Space Similarity (LSS) based local explanations. We demonstrated our
methodology on ML-based recognition of preterm infant morbidities caused by
infection. The risk of mortality, lifelong disability, and antibiotic
resistance due to model failures was an open research question in this domain.
We achieved to identify misclassification cases of two models with our
approach. By contextualizing local explanations, our solution provides
clinicians with actionable insights to support their autonomy for informed
final decisions.
- Abstract(参考訳): AIの機械学習(ML)モデルは医療における高いパフォーマンスを達成するが、エラーは発生しない。
臨床医に誤ったモデルレコメンデーションを特定する権限を与えることは、医療AIへの信頼を高めるために不可欠である。
説明可能なAI(XAI)は、エンドユーザーをサポートするAI推論を明確にすることで、この要件に対処することを目指している。
バイオメディカルイメージングに関するいくつかの研究は、近年有望な結果を得た。
それでも、表型データを用いたモデルの解決策はまだ臨床医の要求を満たすには不十分である。
本稿では,表データで学習したmlモデルの障害を臨床医が識別するための手法を提案する。
我々は,本手法を3つの主柱で構築した。臨床文脈潜伏空間を活用した特徴集合の分解,グローバル説明の臨床的関連の評価,局所的説明に基づく潜伏空間類似性(lss)である。
感染による早期乳児死亡のmlに基づく認識に関する方法論を実証した。
モデル障害による死亡、生涯障害、抗生物質耐性のリスクは、この領域におけるオープンな研究課題であった。
アプローチによって,2つのモデルの誤分類事例を識別できた。
局所的な説明を文脈化することにより、臨床医に情報的最終決定のための自律性を支援するための実用的な洞察を提供する。
関連論文リスト
- Methodological Explainability Evaluation of an Interpretable Deep Learning Model for Post-Hepatectomy Liver Failure Prediction Incorporating Counterfactual Explanations and Layerwise Relevance Propagation: A Prospective In Silico Trial [13.171582596404313]
術前PHLF予測のための可変オートエンコーダ-多層パーセプトロン (VAE-MLP) モデルを開発した。
このモデルは、その意思決定メカニズムに関する洞察を提供するために、カウンターファクトアルとレイヤワイズ関連伝播(LRP)を統合した。
サイリコ臨床試験の3トラックの結果、AIの説明が提供されると、臨床医の予測精度と信頼性が向上した。
論文 参考訳(メタデータ) (2024-08-07T13:47:32Z) - Decoding Decision Reasoning: A Counterfactual-Powered Model for Knowledge Discovery [6.1521675665532545]
医用画像では、AIモデルの予測の背後にある根拠を明らかにすることが、信頼性を評価する上で重要である。
本稿では,意思決定推論と特徴識別機能を備えた説明可能なモデルを提案する。
提案手法を実装することにより,データ駆動モデルにより活用されるクラス固有の特徴を効果的に識別および可視化することができる。
論文 参考訳(メタデータ) (2024-05-23T19:00:38Z) - Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer
Learning Method [0.0]
本研究は,小児および10代に流行する急性リンパ芽球性白血病(ALL)に焦点をあてる。
ディープラーニング技術を活用したコンピュータ支援診断(CAD)モデルを用いた自動検出手法を提案する。
提案手法は98.38%の精度を達成し、他の試験モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-12-01T10:37:02Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Evaluation of Popular XAI Applied to Clinical Prediction Models: Can
They be Trusted? [2.0089256058364358]
透明性と説明可能性の欠如は、機械学習(ML)アルゴリズムの臨床的採用を妨げる。
本研究は、医療現場における予測モデルの説明に使用される2つの一般的なXAI手法を評価する。
論文 参考訳(メタデータ) (2023-06-21T02:29:30Z) - Assisting clinical practice with fuzzy probabilistic decision trees [2.0999441362198907]
本研究では,確率木とファジィ論理を組み合わせて臨床実習を支援する新しい手法であるFPTを提案する。
FPTとその予測は、この目的のために特別に設計されたユーザフレンドリーなインターフェースを用いて、直感的に臨床実践を支援することができることを示す。
論文 参考訳(メタデータ) (2023-04-16T14:05:16Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。