Quantum Monte Carlo study of the role of p-wave interactions in
ultracold repulsive Fermi gases
- URL: http://arxiv.org/abs/2212.09150v2
- Date: Mon, 8 May 2023 15:18:38 GMT
- Title: Quantum Monte Carlo study of the role of p-wave interactions in
ultracold repulsive Fermi gases
- Authors: Gianluca Bertaina, Marco G. Tarallo, Sebastiano Pilati
- Abstract summary: We investigate the ground-state properties of single-component Fermi gases with short-range repulsive interactions.
A comparison against recently derived second-order perturbative results shows good agreement in a broad range of interaction strength.
We find remarkable agreement with a recently derived fourth-order expansion that includes $p$-wave contributions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-component ultracold atomic Fermi gases are usually described using
noninteracting many-fermion models. However, recent experiments reached a
regime where $p$-wave interactions among identical fermionic atoms are
important. In this paper, we employ variational and fixed-node diffusion Monte
Carlo simulations to investigate the ground-state properties of
single-component Fermi gases with short-range repulsive interactions. We
determine the zero-temperature equation of state, and elucidate the roles
played by the $p$-wave scattering volume and the $p$-wave effective range. A
comparison against recently derived second-order perturbative results shows
good agreement in a broad range of interaction strength. We also compute the
quasiparticle effective mass, and we confirm the perturbative prediction of a
linear contribution in the $p$-wave scattering volume, while we find
significant deviations from the beyond-mean-field perturbative result, already
for moderate interaction strengths. Finally, we determine ground-state energies
for two-component unpolarized Fermi gases with both interspecies and
intraspecies hard-sphere interactions, finding remarkable agreement with a
recently derived fourth-order expansion that includes $p$-wave contributions.
Related papers
- Production and stabilization of a spin mixture of ultracold dipolar Bose gases [39.58317527488534]
We present experimental results for a mixture composed of the two lowest Zeeman states of $162$Dy atoms.
Due to an interference phenomenon, the rate for such inelastic processes is dramatically reduced with respect to the Wigner threshold law.
arXiv Detail & Related papers (2024-07-11T17:37:01Z) - Non-Hermitian $p$-wave superfluid and effects of the inelastic
three-body loss in a one-dimensional spin-polarized Fermi gas [0.0]
We investigate non-Hermitian $p$-wave Fermi superfluidity in one-dimensional spin-polarized Fermi gases.
Considering an imaginary atom-dimer coupling, we discuss the stability of the superfluid state against the atomic loss effect.
arXiv Detail & Related papers (2023-12-25T13:21:52Z) - $n$-body anti-bunching in a degenerate Fermi gas of $^3$He* atoms [4.3075190561751]
We use the unique single-atom detection properties of $3$He* atoms to perform simultaneous measurements of the $n$-body quantum correlations.
Our results pave the way for using correlation functions to probe some of the rich physics associated with fermionic systems.
arXiv Detail & Related papers (2023-12-05T23:41:00Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Phase Transitions of Repulsive Two-Component Fermi Gases in Two
Dimensions [0.0]
We predict phase separations of two-dimensional Fermi gases with repulsive contact-type interactions between two spin components.
We reveal a universal transition from the paramagnetic state at small repulsive interactions towards ferromagnetic density profiles.
We uncover a zoo of metastable configurations that are energetically comparable to the ground-state density profiles.
arXiv Detail & Related papers (2021-06-02T10:45:33Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - A study on quantum gases: bosons in optical lattices and the
one-dimensional interacting Bose gas [0.0]
Bosonic atoms confined in optical lattices are described by the Bose-Hubbard model.
In the vicinity of the phase boundary, there are degeneracies that occur between every two adjacent lobes.
Motivated by this, we develop perturbative methods to solve the degeneracy-related problems.
arXiv Detail & Related papers (2020-06-23T15:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.