論文の概要: Predicting Citi Bike Demand Evolution Using Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2212.09175v1
- Date: Sun, 18 Dec 2022 21:43:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 18:17:50.344844
- Title: Predicting Citi Bike Demand Evolution Using Dynamic Graphs
- Title(参考訳): 動的グラフを用いたシティ自転車需要の予測
- Authors: Alexander Saff, Mayur Bhandary, Siddharth Srivastava
- Abstract要約: ニューヨーク市のCiti Bikeデータセットにおける自転車需要予測にグラフニューラルネットワークモデルを適用した。
本稿では,ニューヨーク市のCiti Bikeデータセットにおける自転車需要予測にグラフニューラルネットワークモデルを適用しようとする。
- 参考スコア(独自算出の注目度): 81.12174591442479
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bike sharing systems often suffer from poor capacity management as a result
of variable demand. These bike sharing systems would benefit from models to
predict demand in order to moderate the number of bikes stored at each station.
In this paper, we attempt to apply a graph neural network model to predict bike
demand in the New York City, Citi Bike dataset.
- Abstract(参考訳): 自転車シェアリングシステムはしばしば、需要の変化によってキャパシティ管理の貧弱さに苦しむ。
これらの自転車共有システムは、各駅に格納されている自転車の数を減らすために需要を予測するモデルの恩恵を受けるだろう。
本稿では,ニューヨーク市のCiti Bikeデータセットにおける自転車需要予測にグラフニューラルネットワークモデルを適用しようとする。
関連論文リスト
- Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
本稿では,リンクレベルの自転車のボリュームをモデル化するために,グラフ畳み込みネットワークアーキテクチャを利用する最初の研究について述べる。
オーストラリア,メルボルン市全体での年間平均自転車数(AADB)を,Strava Metro の自転車数データを用いて推定した。
以上の結果から,GCNモデルは従来のAADB数予測モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-10-11T04:53:18Z) - Bent & Broken Bicycles: Leveraging synthetic data for damaged object
re-identification [59.80753896200009]
変形や欠落による視覚的外観の変化と微妙なクラス内変化を区別することを目的とした,損傷対象の再識別の新たな課題を提案する。
我々は、コンピュータ生成画像のパワーを活用して、半自動で、損傷前後に同じ自転車の高品質な合成画像を作成する。
このタスクのベースラインとして,マルチタスクでトランスフォーマーをベースとしたディープネットワークであるTransReI3Dを提案する。
論文 参考訳(メタデータ) (2023-04-16T20:23:58Z) - Cross-Mode Knowledge Adaptation for Bike Sharing Demand Prediction using
Domain-Adversarial Graph Neural Networks [8.695763084463055]
本研究では,自転車シェアリング需要予測のためのドメイン逆多重関係グラフニューラルネットワーク(DA-MRGNN)を提案する。
異なるモードのパターン要求から共有可能な特徴を抽出するために、時間的対角適応ネットワークを導入する。
実験はニューヨーク市の実際の自転車シェアリング、地下鉄、ライドシェアリングのデータを用いて行われた。
論文 参考訳(メタデータ) (2022-11-16T13:35:32Z) - Bike Sharing Demand Prediction based on Knowledge Sharing across Modes:
A Graph-based Deep Learning Approach [8.695763084463055]
本研究では,自転車共有需要予測(B-MRGNN)のためのグラフに基づくディープラーニング手法を提案する。
マルチリレーショナルグラフニューラルネットワーク(MRGNN)を導入し、モード間の空間単位間の相関を捉える。
実験はニューヨーク市の実際の自転車シェアリング、地下鉄、ライドシェアリングのデータを用いて行われた。
論文 参考訳(メタデータ) (2022-03-18T06:10:17Z) - Improving short-term bike sharing demand forecast through an irregular
convolutional neural network [16.688608586485316]
本研究は,自転車の短期共有需要予測を改善するために,不規則な畳み込み長短記憶モデル(IrConv+LSTM)を提案する。
提案モデルは,シンガポールのドックレス自転車シェアリングシステムと,シカゴ,ワシントンD.C.,ニューヨーク,ロンドンにある4つのステーションベースシステムを含む,5つの調査サイトでベンチマークモデルを用いて評価された。
このモデルはまた、自転車使用量やピーク期間の異なる地域での優れたパフォーマンスも達成している。
論文 参考訳(メタデータ) (2022-02-09T10:21:45Z) - Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems
using Multi-objective Reinforcement Learning [79.61517670541863]
ドッキングレスPBS(DL-PBS)に欠かせない動的自転車レンタル需要に基づく効率的な自転車配車ソリューションを実現するためのAIの活用
DL-PBSに最適な自転車ディスパッチソリューションを提供するために、マルチオブジェクト強化学習(MORL-BD)に基づく動的自転車ディスパッチアルゴリズムを提案します。
論文 参考訳(メタデータ) (2021-01-19T03:09:51Z) - Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing
System Using Gated Graph Neural Network [79.61517670541863]
Dockless Public Bicycle-share (DL-PBS)ネットワークは多くの国でますます人気が高まっています。
冗長で低電力の駅は、DL-PBSベンダーの公共都市空間とメンテナンスコストを無駄にします。
DL-PBSネットワークに最適な自転車ステーションレイアウトを動的に提供できるよう、BSDP(自転車ステーションダイナミックプランニング)システムを提案します。
論文 参考訳(メタデータ) (2021-01-19T02:51:12Z) - Towards Dynamic Urban Bike Usage Prediction for Station Network
Reconfiguration [7.5640951518267165]
AtCoRと呼ばれる自転車ステーションレベルの予測アルゴリズムは、既存のステーションと新しいステーションの両方で自転車の使用率を予測することができる。
AtCoRは、既存のステーションと将来のステーションの両方の予測において、ベースラインと最先端モデルを上回っている。
論文 参考訳(メタデータ) (2020-08-13T23:41:29Z) - Exploiting Interpretable Patterns for Flow Prediction in Dockless Bike
Sharing Systems [45.45179250456602]
本稿では,解釈可能な交通パターンを用いた効率的な自転車フロー予測を実現するための,解釈可能な自転車フロー予測(IBFP)フレームワークを提案する。
都市部をフロー密度に応じて領域に分割することにより、まず、グラフ正規化スパース表現を用いて、各領域間の自転車の流れをモデル化する。
そして,スパース表現を用いたサブスペースクラスタリングを用いて,自転車のフローからトラフィックパターンを抽出し,解釈可能なベース行列を構築する。
最後に、実世界のデータを用いた実験結果から、ドックレス自転車シェアリングシステムにおけるフロー予測におけるIBFP法の利点が示された。
論文 参考訳(メタデータ) (2020-04-13T05:31:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。