Empowering Diffusion Models on the Embedding Space for Text Generation
- URL: http://arxiv.org/abs/2212.09412v3
- Date: Mon, 22 Apr 2024 09:50:44 GMT
- Title: Empowering Diffusion Models on the Embedding Space for Text Generation
- Authors: Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, Linli Xu,
- Abstract summary: We study the optimization challenges encountered with both the embedding space and the denoising model.
Data distribution is learnable for embeddings, which may lead to the collapse of the embedding space and unstable training.
Based on the above analysis, we propose Difformer, an embedding diffusion model based on Transformer.
- Score: 38.664533078347304
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion models have achieved state-of-the-art synthesis quality on both visual and audio tasks, and recent works further adapt them to textual data by diffusing on the embedding space. In this paper, we conduct systematic studies of the optimization challenges encountered with both the embedding space and the denoising model, which have not been carefully explored. Firstly, the data distribution is learnable for embeddings, which may lead to the collapse of the embedding space and unstable training. To alleviate this problem, we propose a new objective called the anchor loss which is more efficient than previous methods. Secondly, we find the noise levels of conventional schedules are insufficient for training a desirable denoising model while introducing varying degrees of degeneration in consequence. To address this challenge, we propose a novel framework called noise rescaling. Based on the above analysis, we propose Difformer, an embedding diffusion model based on Transformer. Experiments on varieties of seminal text generation tasks show the effectiveness of the proposed methods and the superiority of Difformer over previous state-of-the-art embedding diffusion baselines.
Related papers
- Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
We propose an optimization approach, dubbed Demon, to guide the denoising process at inference time without backpropagation through reward functions or model retraining.
Our approach works by controlling noise distribution in denoising steps to concentrate density on regions corresponding to high rewards through optimization.
To the best of our knowledge, the proposed approach is the first inference-time, backpropagation-free preference alignment method for diffusion models.
arXiv Detail & Related papers (2024-10-08T07:33:49Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
We show that it is possible to perform domain adaptation via the noise space using diffusion models.
In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss.
We present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model.
arXiv Detail & Related papers (2024-06-26T17:40:30Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
We propose a unified framework aimed at enhancing the diffusion priors for 3D generation tasks.
We identify a divergence between the diffusion priors and the training procedures of diffusion models that substantially impairs the quality of 3D generation.
arXiv Detail & Related papers (2023-12-08T03:55:34Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Seismic Data Interpolation via Denoising Diffusion Implicit Models with Coherence-corrected Resampling [7.755439545030289]
Deep learning models such as U-Net often underperform when the training and test missing patterns do not match.
We propose a novel framework that is built upon the multi-modal diffusion models.
Inference phase, we introduce the denoising diffusion implicit model to reduce the number of sampling steps.
To enhance the coherence and continuity between the revealed traces and the missing traces, we propose two strategies.
arXiv Detail & Related papers (2023-07-09T16:37:47Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Two-stage Denoising Diffusion Model for Source Localization in Graph
Inverse Problems [19.57064597050846]
Source localization is the inverse problem of graph information dissemination.
We propose a two-stage optimization framework, the source localization denoising diffusion model (SL-Diff)
SL-Diff yields excellent prediction results within a reasonable sampling time at extensive experiments.
arXiv Detail & Related papers (2023-04-18T09:11:09Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - DINOISER: Diffused Conditional Sequence Learning by Manipulating Noises [38.72460741779243]
We introduce DINOISER to facilitate diffusion models for sequence generation by manipulating noises.
Experiments show that DINOISER enables consistent improvement over the baselines of previous diffusion-based sequence generative models.
arXiv Detail & Related papers (2023-02-20T15:14:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.