論文の概要: Robustness of quantum reinforcement learning under hardware errors
- arxiv url: http://arxiv.org/abs/2212.09431v1
- Date: Mon, 19 Dec 2022 13:14:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 07:51:53.481853
- Title: Robustness of quantum reinforcement learning under hardware errors
- Title(参考訳): ハードウェア誤差下における量子強化学習のロバスト性
- Authors: Andrea Skolik, Stefano Mangini, Thomas B\"ack, Chiara Macchiavello,
Vedran Dunjko
- Abstract要約: 変分量子機械学習アルゴリズムは、機械学習タスクに短期量子デバイスをどのように利用するかに関する最近の研究の焦点となっている。
これらは、動作している回路をデバイスに合わせることができ、計算の大部分を古典に委譲できるため、これに適していると考えられている。
しかし、ハードウェアによるノイズの影響下での量子機械学習モデルのトレーニングの効果は、まだ広く研究されていない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum machine learning algorithms have become the focus of
recent research on how to utilize near-term quantum devices for machine
learning tasks. They are considered suitable for this as the circuits that are
run can be tailored to the device, and a big part of the computation is
delegated to the classical optimizer. It has also been hypothesized that they
may be more robust to hardware noise than conventional algorithms due to their
hybrid nature. However, the effect of training quantum machine learning models
under the influence of hardware-induced noise has not yet been extensively
studied. In this work, we address this question for a specific type of
learning, namely variational reinforcement learning, by studying its
performance in the presence of various noise sources: shot noise, coherent and
incoherent errors. We analytically and empirically investigate how the presence
of noise during training and evaluation of variational quantum reinforcement
learning algorithms affect the performance of the agents and robustness of the
learned policies. Furthermore, we provide a method to reduce the number of
measurements required to train Q-learning agents, using the inherent structure
of the algorithm.
- Abstract(参考訳): 変動量子機械学習アルゴリズムは、機械学習タスクに短期量子デバイスを利用する方法に関する最近の研究の焦点となっている。
これらは、実行中の回路がデバイスに調整可能であり、計算の大部分が古典的なオプティマイザに委譲されるため、この方法に適していると考えられている。
また、それらのハイブリッド性により、従来のアルゴリズムよりもハードウェアノイズに頑健であるという仮説もある。
しかし、ハードウェアによるノイズの影響下での量子機械学習モデルのトレーニングの効果は、まだ広く研究されていない。
本研究では,様々なノイズ源の存在下での学習性能を,ショットノイズ,コヒーレント,アンコヒーレントな誤りなど,特定の種類の学習,すなわち変分強化学習に向け,この問題に対処する。
量子強化学習アルゴリズムの学習中における雑音の存在がエージェントの性能と学習方針の頑健性に及ぼす影響を解析的・実証的に検討した。
さらに,本アルゴリズムの固有構造を用いて,q-learningエージェントの学習に必要な測定回数を削減する手法を提案する。
関連論文リスト
- Quantum noise modeling through Reinforcement Learning [38.47830254923108]
本稿では,量子チップに影響を及ぼすノイズを特徴付ける機械学習手法を導入し,シミュレーション中にエミュレートする。
我々のアルゴリズムは強化学習を活用し、様々なノイズモデルを再現する際の柔軟性を向上させる。
実超伝導量子ビット上でのシミュレーションおよび試験によりRLエージェントの有効性が検証された。
論文 参考訳(メタデータ) (2024-08-02T18:05:21Z) - Certifiably Robust Encoding Schemes [40.54768963869454]
量子機械学習は、量子力学の原理を使ってデータを処理し、速度と性能の潜在的な進歩を提供する。
これまでの研究では、これらのモデルが入力データを操作したり、量子回路のノイズを悪用したりする攻撃を受けやすいことが示されている。
本研究では,従来のデータ符号化方式における摂動に対するロバスト性を調べることで,この研究線を拡張した。
論文 参考訳(メタデータ) (2024-08-02T11:29:21Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
本研究は, 量子コンピュータ上での一般相対論的非弾性散乱過程の位相シフトを求めるアルゴリズムの開発を報告する。
論文 参考訳(メタデータ) (2024-07-04T21:11:05Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Characterizing and mitigating coherent errors in a trapped ion quantum
processor using hidden inverses [0.20315704654772418]
量子コンピューティングテストベッドは、量子ビットの小さな集合に対して高忠実な量子制御を示す。
これらのノイズの多い中間スケールデバイスは、デコヒーレンスの前に十分な数のシーケンシャルな操作をサポートすることができる。
これらのアルゴリズムの結果は不完全であるが、これらの不完全性は量子コンピュータのテストベッド開発をブートストラップするのに役立ちます。
論文 参考訳(メタデータ) (2022-05-27T20:35:24Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z) - Efficient classical simulation and benchmarking of quantum processes in
the Weyl basis [0.0]
Weylユニタリを用いたランダム化ベンチマークアルゴリズムを開発し,エラーモデルの混在を効率よく同定し,学習する。
本手法を変分量子固有解器に現れるアンザッツ回路に適用する。
論文 参考訳(メタデータ) (2020-08-27T16:46:12Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
我々は、雑音に対する量子機械学習アルゴリズムの検証と解析のための正式なフレームワークを定義する。
堅牢な境界が導出され、量子機械学習アルゴリズムが量子トレーニングデータに対して堅牢であるか否かを確認するアルゴリズムが開発された。
我々のアプローチはGoogleのQuantum分類器に実装されており、ノイズの小さな乱れに関して量子機械学習アルゴリズムの堅牢性を検証することができる。
論文 参考訳(メタデータ) (2020-08-17T11:56:23Z) - Noise robustness and experimental demonstration of a quantum generative
adversarial network for continuous distributions [0.5249805590164901]
連続確率分布を学習するために、ノイズの多いハイブリッド量子生成逆数ネットワーク(HQGAN)を数値シミュレーションする。
また,アルゴリズムの計算スケーリングを削減するために,異なるパラメータがトレーニング時間に与える影響についても検討する。
我々の研究結果は、ノイズの多い中間量子デバイス上で異なる量子機械学習アルゴリズムを実験的に探索するための道を開いた。
論文 参考訳(メタデータ) (2020-06-02T23:14:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。