Quantum Uncertainty as an Intrinsic Clock
- URL: http://arxiv.org/abs/2212.09442v3
- Date: Thu, 3 Aug 2023 04:35:12 GMT
- Title: Quantum Uncertainty as an Intrinsic Clock
- Authors: Etera R. Livine
- Abstract summary: In quantum mechanics, a classical particle is raised to a wave-function, thereby acquiring many more degrees of freedom.
We show that the Ermakov-Lewis invariant for the classical evolution in a time-dependent harmonic potential is actually the quantum uncertainty of a Gaussian wave-packet.
This naturally extends the classical Ermakov-Lewis invariant to a constant of motion for quantum systems following Schrodinger equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In quantum mechanics, a classical particle is raised to a wave-function,
thereby acquiring many more degrees of freedom. For instance, in the
semi-classical regime, while the position and momentum expectation values
follow the classical trajectory, the uncertainty of a wave-packet can evolve
and beat independently. We use this insight to revisit the dynamics of a 1d
particle in a time-dependent harmonic well. One can solve it by considering
time reparameterizations and the Virasoro group action to map the system to the
harmonic oscillator with constant frequency. We prove that identifying such a
simplifying time variable is naturally solved by quantizing the system and
looking at the evolution of the width of a Gaussian wave-packet. We further
show that the Ermakov-Lewis invariant for the classical evolution in a
time-dependent harmonic potential is actually the quantum uncertainty of a
Gaussian wave-packet. This naturally extends the classical Ermakov-Lewis
invariant to a constant of motion for quantum systems following Schrodinger
equation. We conclude with a discussion of potential applications to quantum
gravity and quantum cosmology.
Related papers
- Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and
Designs [0.0]
We study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians.
We show that statistical pseudo-randomness can already be achieved by a quantum system driven with a single frequency.
arXiv Detail & Related papers (2024-02-09T19:00:00Z) - Quantizing the Quantum Uncertainty [0.0]
We discuss the quantization of the quantum uncertainty as an operator acting on wave-functions over field space.
We show how this spectrum appears in the value of the coupling of the effective conformal potential driving the evolution of extended Gaussian wave-packets.
We conclude with an open question: is it possible to see experimental signatures of the quantization of the quantum uncertainty in non-relativistic physics?
arXiv Detail & Related papers (2023-07-03T14:40:14Z) - Evolution of the wave-function's shape in a time-dependent harmonic
potential [0.0]
We show how to extract the effective dynamics for wave-packets evolving according to the Schrodinger equation.
We then show how to integrate the evolution of all the higher moments for a general wave-function in a time-dependent harmonic potential.
arXiv Detail & Related papers (2023-05-05T21:05:36Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Diverging quantum speed limits: a herald of classicality [0.0]
We show that vanishing quantum speed limit (QSL) times can be traced back to reduced uncertainty in quantum observables.
We show that the classicality that emerges due to incoherent mixing of states from the addition of classical noise typically increases the QSL time.
arXiv Detail & Related papers (2021-07-13T18:25:28Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum potential in dust collapse with a negative cosmological constant [0.0]
We obtain the wave function describing collapsing dust in an anti-de Sitter background, as seen by a co-moving observer.
We perform a causal de Broglie-Bohm analysis, and obtain the corresponding quantum potential.
An initially collapsing solution with a negative cosmological constant bounces back after reaching a minimum radius.
arXiv Detail & Related papers (2020-07-21T17:43:02Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.