Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and
Designs
- URL: http://arxiv.org/abs/2402.06720v1
- Date: Fri, 9 Feb 2024 19:00:00 GMT
- Title: Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and
Designs
- Authors: Sa\'ul Pilatowsky-Cameo, Iman Marvian, Soonwon Choi, Wen Wei Ho
- Abstract summary: We study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians.
We show that statistical pseudo-randomness can already be achieved by a quantum system driven with a single frequency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite its long history, a canonical formulation of quantum ergodicity that
applies to general classes of quantum dynamics, including driven systems, has
not been fully established. Here we introduce and study a notion of quantum
ergodicity for closed systems with time-dependent Hamiltonians, defined as
statistical randomness exhibited in their long-time dynamics. Concretely, we
consider the temporal ensemble of quantum states (time-evolution operators)
generated by the evolution, and investigate the conditions necessary for them
to be statistically indistinguishable from uniformly random states (operators)
in the Hilbert space (space of unitaries). We find that the number of driving
frequencies underlying the Hamiltonian needs to be sufficiently large for this
to occur. Conversely, we show that statistical pseudo-randomness --
indistinguishability up to some large but finite moment, can already be
achieved by a quantum system driven with a single frequency, i.e., a Floquet
system, as long as the driving period is sufficiently long. Our work relates
the complexity of a time-dependent Hamiltonian and that of the resulting
quantum dynamics, and offers a fresh perspective to the established topics of
quantum ergodicity and chaos from the lens of quantum information.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Complete Hilbert-Space Ergodicity in Quantum Dynamics of Generalized
Fibonacci Drives [0.0]
We investigate whether quantum systems can exhibit a stronger form of ergodicity, wherein any time-evolved state uniformly visits the entire Hilbert space over time.
We find that there exists a family of aperiodic, yet deterministic drives with minimal symbolic complexity.
Our results provide a basis for understanding thermalization in general time-dependent quantum systems.
arXiv Detail & Related papers (2023-06-20T18:00:01Z) - Quantum Uncertainty as an Intrinsic Clock [0.0]
In quantum mechanics, a classical particle is raised to a wave-function, thereby acquiring many more degrees of freedom.
We show that the Ermakov-Lewis invariant for the classical evolution in a time-dependent harmonic potential is actually the quantum uncertainty of a Gaussian wave-packet.
This naturally extends the classical Ermakov-Lewis invariant to a constant of motion for quantum systems following Schrodinger equation.
arXiv Detail & Related papers (2022-12-19T13:32:55Z) - Quantum walks on random lattices: Diffusion, localization and the
absence of parametric quantum speed-up [0.0]
We study propagation of quantum walks on percolation-generated two-dimensional random lattices.
We show that even arbitrarily weak concentrations of randomly removed lattice sites give rise to a complete breakdown of the superdiffusive quantum speed-up.
The fragility of quantum speed-up implies dramatic limitations for quantum information applications of quantum walks on random geometries and graphs.
arXiv Detail & Related papers (2022-10-11T10:07:52Z) - Generalised quantum speed limit for arbitrary time-continuous evolution [0.0]
We derive a generalised quantum speed limit (GQSL) for arbitrary time-continuous evolution using the geometrical approach of quantum mechanics.
The GQSL is applicable for quantum systems undergoing unitary, non-unitary, completely positive, non-completely positive and relativistic quantum dynamics.
arXiv Detail & Related papers (2022-07-08T21:00:11Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Time periodicity from randomness in quantum systems [0.0]
Many complex systems can spontaneously oscillate under non-periodic forcing.
We show that this behavior can emerge within the repeated-interaction description of open quantum systems.
Specifically, we consider a many-body quantum system that undergoes dissipation due to sequential coupling with auxiliary systems at random times.
arXiv Detail & Related papers (2021-04-27T18:02:31Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.