論文の概要: Unnatural Instructions: Tuning Language Models with (Almost) No Human
Labor
- arxiv url: http://arxiv.org/abs/2212.09689v1
- Date: Mon, 19 Dec 2022 18:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 14:25:31.018916
- Title: Unnatural Instructions: Tuning Language Models with (Almost) No Human
Labor
- Title(参考訳): 不自然な指示:(ほとんど)人間労働を伴わない言語モデルをチューニングする
- Authors: Or Honovich, Thomas Scialom, Omer Levy, Timo Schick
- Abstract要約: 非自然的インストラクション(Unnatural Instructions: 創造的で多様なインストラクションの大規模なデータセット)を紹介します。
命令の3つのシード例と4番目の例を抽出した言語モデルによって64,000のサンプルを収集する。
このセットは、モデルに各命令を言い換えるよう促すことで拡張され、約24万の命令、入力、出力の例が生成される。
- 参考スコア(独自算出の注目度): 48.116843121810135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning enables pretrained language models to perform new tasks
from inference-time natural language descriptions. These approaches rely on
vast amounts of human supervision in the form of crowdsourced datasets or user
interactions. In this work, we introduce Unnatural Instructions: a large
dataset of creative and diverse instructions, collected with virtually no human
labor. We collect 64,000 examples by prompting a language model with three seed
examples of instructions and eliciting a fourth. This set is then expanded by
prompting the model to rephrase each instruction, creating a total of
approximately 240,000 examples of instructions, inputs, and outputs.
Experiments show that despite containing a fair amount of noise, training on
Unnatural Instructions rivals the effectiveness of training on open-source
manually-curated datasets, surpassing the performance of models such as T0++
and Tk-Instruct across various benchmarks. These results demonstrate the
potential of model-generated data as a cost-effective alternative to
crowdsourcing for dataset expansion and diversification.
- Abstract(参考訳): インストラクションチューニングにより、事前訓練された言語モデルが推論時自然言語記述から新しいタスクを実行できる。
これらのアプローチは、クラウドソースデータセットやユーザインタラクションという形で、膨大な量の人的監視に依存しています。
本研究では,創造的で多様な指示の膨大なデータセットを,ほとんど人的労働を伴わずに収集し,不自然な指示を導入する。
命令の3つのシード例と4番目の例を抽出した言語モデルによって64,000のサンプルを収集する。
このセットは、モデルに各命令を言い換えるよう促すことで拡張され、約24万の命令、入力、出力の例が生成される。
実験によると、かなりのノイズを含むにもかかわらず、非自然的インストラクションのトレーニングは、オープンソースの手作業によるデータセットのトレーニングの有効性に匹敵し、T0++やTk-Instructといったモデルのパフォーマンスをさまざまなベンチマークで上回っている。
これらの結果は,クラウドソーシングに代わるコスト効率の高いデータ生成の可能性を示す。
関連論文リスト
- Forcing Diffuse Distributions out of Language Models [70.28345569190388]
ユーザ命令に従うように特別に訓練されているにもかかわらず、今日の命令付き言語モデルは、ランダムな出力を生成するように指示された場合、性能が良くない。
本稿では,言語モデルに有効な結果に対して拡散した分布を出力することを奨励する微調整手法を提案する。
論文 参考訳(メタデータ) (2024-04-16T19:17:23Z) - MultiInstruct: Improving Multi-Modal Zero-Shot Learning via Instruction
Tuning [24.741736629886564]
インストラクションチューニングは、命令によって指定されたタスクで事前訓練された言語モデルを微調整する新しい学習パラダイムである。
MUL-TIINSTRUCTは,最初のマルチモーダル・インストラクション・チューニング・ベンチマーク・データセットである。
各種マルチモーダルタスクにおけるゼロショット性能と,テキストのみの命令データセットからの変換学習の利点を示す。
論文 参考訳(メタデータ) (2022-12-21T05:17:06Z) - Self-Instruct: Aligning Language Models with Self-Generated Instructions [76.42871502364697]
Self-Instructは、事前訓練された言語モデルの命令フォロー機能を改善するためのフレームワークである。
私たちのパイプラインは、言語モデルから命令、入力、および出力のサンプルを生成し、その後、元のモデルを微調整するためにそれらを使用する前に、無効または類似のサンプルをフィルタします。
さらなる評価のために、新規タスクのエキスパートによる指示のセットをキュレートし、GPT3とセルフインストラクトのチューニングが既存の公開インストラクションデータセットを大きなマージンで向上することを示す。
論文 参考訳(メタデータ) (2022-12-20T18:59:19Z) - Instruction Induction: From Few Examples to Natural Language Task
Descriptions [55.139554327372934]
実例に適合する自然言語命令を生成するように促すことで,言語モデルがいくつかの実演から基礎となるタスクを明示的に推論できることを示す。
InstructGPTは65.7%の人的パフォーマンスを達成するが、オリジナルのGPT-3モデルは9.8%にしか達しない。
論文 参考訳(メタデータ) (2022-05-22T09:22:37Z) - How Many Data Samples is an Additional Instruction Worth? [20.66688303609522]
最近導入された命令パラダイムは、自然言語で新しいタスクを定義することによって、NLPリソースを活用する非専門家ユーザーに権限を与える。
この結果から,タスク間で平均200個のデータサンプルに付加的な命令を適用できることが示唆された。
論文 参考訳(メタデータ) (2022-03-17T08:30:30Z) - WANLI: Worker and AI Collaboration for Natural Language Inference
Dataset Creation [101.00109827301235]
我々は人間と機械の協調に基づくデータセット作成のための新しいパラダイムを導入する。
我々は、データセット地図を用いて、挑戦的な推論パターンを示すサンプルを自動的に識別し、GPT-3に同様のパターンで新しい例を作成するよう指示する。
結果として得られたデータセットであるWANLIは、108,357の自然言語推論(NLI)の例からなり、ユニークな経験的強度を示す。
論文 参考訳(メタデータ) (2022-01-16T03:13:49Z) - Multitask Prompted Training Enables Zero-Shot Task Generalization [70.12770442071657]
本研究では,一般的な自然言語タスクを人間に読まれる入力形式にマッピングするシステムを開発した。
様々なタスクをカバーしたマルチタスクミックス上に,事前学習したエンコーダ・デコーダモデルを微調整する。
このモデルは、いくつかの標準データセット上で強力なゼロショット性能を達成し、しばしば16倍のサイズのモデルより優れている。
論文 参考訳(メタデータ) (2021-10-15T17:08:57Z) - The Turking Test: Can Language Models Understand Instructions? [45.266428794559495]
本稿では,様々な複雑さの自然言語命令に従うモデルの能力を検証したチューリングテストを提案する。
優れた評価手法にもかかわらず、大きな事前訓練された言語モデルが全てのタスクで不十分に機能することを観察する。
論文 参考訳(メタデータ) (2020-10-22T18:44:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。